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Abstract—Calling mammals, ships, and many other objects have been commonly located during the last cen-
tury with two-dimensional (2D) models from measurements of a signal’s Time Differences of Arrivals
(TDOA) when the objects are not on the 2D surface. The overwhelmingly common method for locating sig-
nals with 2D models takes signal speed as constant and location is derived by intersecting hyperbolas. How-
ever, when correct locations are required for 2D models, the speed used to derive location must depend on
the geodesic distance along the 2D model surface between the object and the instrument. For example, when
this distance is zero, the speed needed for correct location must also be zero. The dimension reduction from
three to two introduces large errors in 2D models both near and far from the instruments unless the variable
speeds induced by the dimensional reduction are explicitly accounted for. In light of these findings, methods
are derived for generating extremely reliable confidence intervals for estimated locations in 2D models and
identifying regions of the 2D model where a 3D model is needed. Because speeds needed for correct location
are spatially inhomogeneous in the extreme, isodiachrons emerge as a natural geometry for interpreting loca-
tion instead of hyperbolas. These issues are caused by choice of coordinates, and the same phenomena occur
when coordinate transformations are applied in other fields of physics.
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1. INTRODUCTION

Locations of a wide variety of objects and phenom-
ena are often estimated with a two-dimensional (2D)
model from measurements of the propagation times of
signals. The objects and signal-measuring instruments
are almost never on the 2D model’s surface, e.g. a
Euclidean plane. In other words, the location of the
object is explicitly forced by the 2D model to reside on
the 2D surface even though it is not there. There are
tens of thousands of papers discussing these models
dating to at least 1886 (p. 204 in [1]) and 1918 [2]). A
Google search with “TDOA 2D location” yields
69000 sites, where TDOA stands for Time Difference
of Arrival. Modeling locations in 2D is ubiquitous.
Contemporary examples include locating calling
mammals in the ocean [3—6], sounds in a room via
robots [7], ships [8], cell phones [9], lightning [10],
wildlife radio transmitters [11], aircraft radio emis-
sions [12], and theoretical developments [13]. These
models derive locations by translating Time Differ-
ence of Arrival (TDOA) to difference of distance
assuming signal speed is constant [3, 5, 7—13], the
overwhelmingly-common case, or are constrained to a
finite interval [4, 6], e.g. 1450...1500 m/s for the
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ocean. Over the last century, perhaps all authors
missed a fundamental problem.

The problem is illuminated by requiring 2D models
to yield correct locations in the absence of measure-
ment errors. Calculation of the signal speed is needed
for a correct location when the object is near a receiver
but not on the 2D surface. Suppose an object has the
same horizontal coordinate as this receiver but is
100 meters above. If the signal propagates at 1 m/s it
arrives 100 s after emission. In the 2D model, the
object is zero meters from the receiver, so the speed to
use to get the object’s horizontal location to equal the
receiver’s location is zero meters divided by 100 s: zero
meters per second! Using the same simple idea, we see
the speed needed to obtain a correct location must
depend on the horizontal distance between the object
and instrument when we remove the third spatial
dimension from the location model. I cannot find any
previous reference for this fact and is the raison d’etre
for this study. In light of these simple findings, we
quantify the regions of validity of 2D models, show
how to extend their validity, provide a method for
deriving extremely reliable confidence intervals for
location, and explain how an unconventional geomet-
rical shape naturally emerges as a means to derive



DIMENSION REDUCTION IN LOCATION ESTIMATION

location. The topics are related to coordinate transfor-
mations in general, with similar behavior found in
other applications (Sec. 7). To the best of my knowl-
edge, most of the ideas in this paper are new. Since
there are 69 000 web sites dealing with the topic of 2D
models, it is difficult to identify novelty with certainty.
I will point out findings I believe to be novel while
respecting the possibility of previous discovery. The
finding of zero speed is explainable with the simplest
of mathematics but methods for obtaining reliable
locations in 2D are not so simple. The variation of sig-
nal speed with horizontal distance from an instrument
is purely due to the 2D model approximation. There is
no analogous behavior when signals are explicitly
located in three-dimensional (3D) space.

Scientists appear to feel more comfortable utilizing
the 2D model when the objects are far from the instru-
ments in the horizontal direction. But even so, these
models are commonly used to locate signals even
when the objects are near the instruments. For exam-
ple, in 2017 scientists used recordings from bottom-
mounted receivers at 40 m depth to locate whales near
and far from their instruments (e.g. Fig. 2 in [6]). It is
shown here the 2D model approximation can yield
very large errors not only near the instruments but
even far from the instruments, even when the vertical
separation between the instruments and objects are
tens of meters and the horizontal separations are many
kilometers (Sec. 3). The 2D model approximation is,
perhaps unintuitively, not valid even at large horizon-
tal separations from the instruments.

It will be shown how to delineate regions on the 2D
model-surface where the 2D approximation is valid
and how to compute reliable confidence intervals in
the valid regions. It is necessary to use 3D models in
the non-valid regions. There are many ways of model-
ing locations in 3D, and the best choice is application-
dependent. Li et al. [14] review 2D and 3D modeling
with TDOA, Cummins and Murphy [15] review 2D
and 3D models to locate lightning, Rascon and Meza
review means to locate sounds with robots [16]. None
of these papers notes the need to vary signal speed in
2D models due to the elimination of the third spatial
dimension.

Reliable locations are important for at least two
reasons. Firstly, we wish to understand the behavior of
a vocalizing marine mammal in the presence of dis-
turbing sounds such as air-guns or Navy sonars. Reli-
able locations are needed for censusing and under-
standing behavior. Secondly, we wish to track loca-
tions of sounds. If the model for location yields
incorrect locations because the 2D approximation is
invalid, the tracker is provided invalid data. Valid loca-
tions have a better chance of forming valid tracks.

It is natural to ask why 2D models are used when it
is widely known they are approximations. Reasons
include, objects are usually horizontally-far from the
receivers and the 2D approximation seems like it
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should be valid, 3D models require too much com-
puter time, 3D models are more complicated, 2D
models are used ubiquitously, implying their validity,
the receivers are all near the same vertical coordinate
and cannot be used to estimate vertical coordinates of
a source at similar vertical coordinates, and, lastly, we
are happy with the object’s horizontal location: there
is no need for a 3D model.

The subject of this paper may seem disorienting to
readers primarily familiar with 3D models. In the
ocean and atmosphere, the speed of sound can vary
vertically and horizontally by significant amounts.
From this perspective, readers could wonder why any
contemporary paper would discuss 2D models where
speed is either constant, or, in a few cases, varies
between specified bounds. For the reasons stated
above, 2D models are commonly used. Understand-
ing how to use them appropriately could be important.

We explain the problem from the perspective of
planar 2D models, i.e. Flatland, (Sec. 2) and quantify
errors when the 2D effective speed is constant (Sec. 3).
The material in these two sections appears to be new.
Errors can be eliminated when this speed’s value varies
with distance from each instrument. With these varia-
tions, location can be interpreted with an unconven-
tional geometry (Sec. 4). The unconventional geome-
try is not new, but this appears to be the first publica-
tion to explain how its use eliminates errors from the
2D approximation. Sec. 5 explains how to incorporate
the variable speed and the unconventional geometry in
a model accounting for all significant phenomena
effecting location in both the air and water. The model
yields extremely reliable confidence intervals for loca-
tion. Its reliability depends on accounting for the fact
that the speed of the signal depends on coordinates,
the signals propagate along one or more curved paths,
there are errors in estimates of the TDOA, the 3D field
of signal speed, and the coordinates of the receivers. It
will be shown how to identify invalid regions of 2D
models where 3D models must be used to obtain reli-
able locations. Showing how to identify valid and
invalid regions appears to be new. The model in Sec. 5
has been tested with data and independently tested by
others with success. Sec. 6 discuses other flatlands,
namely spherical and spheroidal surfaces. This mate-
rial appears to be new. Results are discussed in Sec. 7
and connections are made with other fields.

2. FLATLAND
2.1. Two- and Three-Dimensional Effective Speeds

Suppose it’s desirable to model locations of objects
emitting or reflecting signals. A signal propagates
between points P1 and P2 in 3D space (Fig. 1). Amea-
surement is made at P2. The signal propagates
between the points following the laws of physics, not
usually the line segment of length d, unless the speed
of the signal is spatially homogeneous.



180 SPIESBERGER

P1

TL,
X P2

h,u

Fig. 1. Signal propagates between points P1 and P2. Dis-
tance of separation is d, with horizontal and vertical sepa-
rations /# and v. xy-plane is defined to be “horizontal”
where locations are obtained from model. Both points may
be out of xy-plane. Effective 3D and 2D speeds of signal
are ¢ and u respectively where horizontal separation # is
parallel to xy-plane.

Define the 3D effective speed ¢ to be the geodesic
distance d between the points divided by the time 7 for
the signal propagating between these points,

d (1)
t

C

In flat space, the geodesic length is the Euclidean dis-
tance. The 2D effective speed u is adopted by the 2D
model for location. It is defined to be the horizontal
separation 4 between the points divided by the same
propagation time ¢,

u="l )
t
Solve Eq. (1) for # and substitute into Eq. (2) to get
hc
u=-—. (3
J )

2D and 3D effective speeds are identical when 4 = d:
both points are on the 2D surface.

To see how the 2D effective speed depends on hor-
izontal and vertical separation instead of horizontal
and 3D separation, we use the Pythagorean relation

1
d =2 + h*)2 fordin Eq. (3),
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Fig. 2. Object (*) above Flatland. Each of three radars (r +)
yield object’s location on circle in Flatland since they
know nothing of 3D space (Sec. 2.2). Circles intersect
within 400 m of object’s horizontal location (Fig. 3).

N (4)
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When either P1 or P2 are not on the 2D surface, v
is not zero, and the 2D and 3D effective speeds differ.
When the horizontal separation is zero and the vertical
separation is not zero, the denominator in Eq. (4) goes
to infinity and the effective speed is zero. Eq. (3) shows
the same behavior: the length of the hypotenuse d
exceeds the horizontal separation 4, when the vertical
separation is positive, so when A goes to zero, d
remains positive and u goes to zero. The zeros of effec-
tive speed are problems for 2D models: they are caused
by removal of the third spatial dimension.

2D and 3D effective speeds are not the same as
another approximation called the “effective speed in a
moving medium”: the algebraic sum of the scalar
speed of sound with the magnitude of the current or
wind-vector.

u =

2.2. Locating Signals in Flatland

The implication of estimating location in Flatland,
a Euclidean plane, is explained assuming signal speed
is a constant equal to 1450 m/s. In Flatland, nothing is
known of 3D space. Flatland is the perspective of most
papers utilizing 2D models, except the speed is set to
some other constant whose value does not matter for
the purposes illustrated here. A signal is transmitted to
a receiver but its reception is weak. Scientists hypoth-
esize an object in Flatland reflects the signal and
arrives 180° out of phase with the direct path. To find
the reflector, an acoustic “radar” is built. The distance
to a reflecting object is obtained by measuring the
round-trip travel time of the signal 7. If time 7] is
measured it means the object is at distance /, = ¢T)/2
where c¢ is signal speed. The first measurement 7;
yields distance /,, so the object is on a circle of radius
[,. The radar is moved, a second measurement is made
wherein 7, yields a distance /, whose corresponding
circle intersects the first at two points. A third mea-
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Fig. 3. Same as Fig. 2 except viewed above showing circles
not intersecting at single point.

surement 73 yields a third circle intersecting one point.
Flatland scientists go to the hypothesized location and
find the reflector. It is removed and signal reception is
restored.

Sometime later, the reception disappears again.
Scientists re-deploy their radar, unaware of the exis-
tence of an object in 3D space parked over Flatland
with Flatland Cartesian location (0,0). Radars are
deployed at three locations, and three circles are
obtained whose points of intersection occur in the
proximity of the origin (Fig. 2). From afar, the inter-
sections look like a useful solution is obtained, but
when the figure is enlarged the points of intersection
differ by hundreds of meters (Fig. 3). Flatland scien-
tists are unsatisfied because the accuracy of their mea-
surements should yield a single location. Further-
more, they go to the area where the circles intersect
but find no reflectors.

Because Flatland scientists cannot explain 400 m
discrepancies in location, they move their radars close
to the origin hoping for more accuracy, but instead
obtain worse results (Fig. 4). In response, their theo-
retical physicists hypothesize the existence of a third
spatial dimension of the universe, invent a new geo-
metrical shape called a “sphere”, use the same data to
intersect three spheres, whose intersections occur at
two points: their x-y origin and elevations z = +—400 m
above and below Flatland. One of these is correct.

3. QUANTIFYING ERRORS WITH CONSTANT
2D EFFECTIVE SPEED

A common method for locating objects in 2D mod-
els is to assume the 2D effective speed is a constant. We
quantify errors of this approximation, leaving discussion
of other errors affecting location to Sec. 5.
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Fig. 4. Same as Fig. 2 except radars moved closer to the
origin.

3.1. Direct-path Time

Suppose we estimate the time 7 for a signal to prop-
agate between a source on Flatland and a reflector at
perpendicular distance v from the surface. Flatland
corresponds to z = 0 in Cartesian coordinates. Let the
source be located at x = 0 and y = 0 (point P2, Fig. 1).
The reflector is located at point P1 (x, y, z = v). In
Flatland, the estimated distance to the reflector is

hﬂat :cﬂatt’ (5)

where c¢q,, is @ constant. A constant value is the over-

whelmingly popular method for locating signals with

2D models. The 3D distance to the signal is d = ct

where c is the 3D effective speed (Fig. 1). The projec-
1

tion of 4 onto Flatland is 4 = (d2 - 1/2)E or

hzd(l—ZTz] , (6)

(Fig. 1). The error of the 2D location model is,

N =

esfmm—h=cﬂmr—h=cﬂm§—h. )

Substituting Eq. (6) in Eq. (7), we get

1
N
- —cﬂat—(l—v—zjz d. (8)
c d

A single speed is often adopted for the 2D model:
the same as the 3D effective speed, ¢, = ¢. For direct-
path times, this forces the error to zero when the
reflector’s horizontal distance is much greater than its
vertical offset (Fig. 5a). Distances are normalized by
vertical offset v because v is the geometrical parameter
affecting error. Because errors are large when the hor-
izontal offset / is small, we could choose a smaller
value for ¢, yielding slightly smaller errors at small
offsets and larger errors at large offsets (Fig. 5b). In the
absence of knowledge of the source’s horizontal and
vertical location, it is impossible to know the correct
value to choose for ¢, yielding zero error in location.
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Fig. 5. (a) Error of 2D location model versus true horizon-
tal location of 3D object when 2D model uses 3D effective
signal speed c. Errors tabulated for locations derived from
measurement of signal time between a source and receiver.
Horizontal distance to object projected onto 2D model
normalized by perpendicular distance v of object from 2D
model (horizontal axis). Vertical axis is normalized error of
2D model €/v, where € is (Eq. 8). (b) Same except 2D model
uses nine-tenths of 3D effective signal speed for purpose of
slightly decreasing 2D model errors at smaller horizontal dis-

tances at expense of larger errors at large distances.

The purpose of showing Eq. (8) is to show errors in the
2D model as a function of the model’s selection for
signal speed.

3.2. Time Differences of Arrivals (TDOA)

We measure TDOAs from a source and estimate
location with a 2D model. In some regions of the
plane, three receivers are sufficient to yield a unique
mathematical solution, yet other regions require four
receivers [17]. Let the signal time between the source
and receiver i be #. With R receivers, we measure
TDOA:s,
=t

1

-1

T, P j=23,..R 9)

With three receivers, we measure Ty, T3, and T3,
but without errors of measurement T,; provides no
independent information since T,; = —T;, + T;3. Simi-
larly, four receivers yields three independent TDOAs.

We adopt a single sound speed in the 2D model,
cna- TDOAS are converted to a difference in distance
from receivers 1 andj with

i<j

(10)

This is a hyperbola, the locus of points whose dif-
ference in distance is constant from two points. Loca-
tion is obtained by intersecting hyperbolas. We set the

h—1; =y (tl _tj) = CpaTyj-

2D effective speed as cq, = 1450 m/s: the same as the
3D effective speed. Consider a shallow-water scenario
with source at 15 m depth and four receivers at 50 m
depth. Four receivers are used to avoid the mathemat-
ical plurality of solutions with only three receivers [17].
We assume ¢, =1, 2, 3, 4, are measured without error,
yielding three independent TDOAs. Two hyperbolas
are intersected, each derived from t;, and 7T,;. This
yields the first set of intersected locations in the plane
with 0, 1, 2, 3, or 4 points of intersection. If the source
was in the plane of the model, a solution would always
exist, but not necessarily when the source is out of the
plane. If there are two or more points of intersection,
a new hyperbola is formed from receivers one and four
to attempt to resolve the ambiguity. The new hyper-
bola is intersected with the hyperbola from receivers
one and two. These intersect at the second set of loca-
tions containing 0, 1, 2, 3, or 4 elements. If either the
first or second set is empty, no solution for location is
determined. If the first set contains two or more loca-
tions, and the second set is empty, we end up with
ambiguous solutions. Otherwise we choose the single
location from the first set whose distance is minimum
to any of the locations from the second set. If the
source was in the plane of the model, we would always
have a single solution for location. The out-of-plane
geometry introduces unavoidable complications as
long as we insist on using a 2D model with a single
speed ¢y

Receivers are placed at horizontal Cartesian coor-
dinates (=510, —500), (500, —490), (500, 507), and
(—502, 506) m (Fig. 6). The source is placed at 200 m
increments of x and y in an area 20 x 20 km? centered
on the mean horizontal location of the receivers. The
2D model yields source locations (x,,, y,,). The error of
each (x,,, y,,) is its distance to the true horizontal loca-
tion. Unfortunately, very large errors occur at sub-grid
intervals, so the plot greatly underestimates errors. It is
impractical to search the horizontal space with enough
resolution to reveal the largest error. For example, we
decreased the grid interval from 200 to 0.2 m near
receiver 1. The maximum error rose to several hundred
meters. Then the grid interval was decreased to 0.1 m
and the maximum error increased to 1781 m. The six
ridges with large errors are caused by nearly-parallel
asymptotes of the hyperbolas. Points of intersection of
nearly-parallel asymptotes are sensitive to variation in
2D effective speed. Errors are tabulated in five dis-
tance intervals from the mean location of the receivers
(Table 1). Mean errors are about 20 m. Maximum
errors are large: between 600 and 1000 m. When the
source is located within the x—y perimeter of the
receiver’s polygon, maximum error is at least 1781 m.
Errors are large compared with the 35 m offset of the
source from the model plane.

Next, the errors of this same problem are quanti-
fied when the 2D effective speed is 5 m/s less than the
3D effective speed of 1450 m/s (Fig. 6b). The asym-
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Fig. 6. (a) Maximum horizontal error of 2D (planar) location model derived with TDOAs from four receivers (dots) as function

of horizontal location of acoustic source. Source and receivers at 15 and 50 m depth respectively. Vertical axis is log; of error:
two is 100 m. 2D effective speed equals 3D effective speed 1450 m/s. Errors due to non-coplanar objects and utilization of single

2D effective speed (Sec. 3.2). (b) Same as (a) except 2D effective speed is 5 m/s less.

metry in error with azimuthal angle is caused by the
use of receiver one as the reference. The errors grow
considerably with large values far from the ridges of
Fig. 6a. The large errors are caused by the locations
where the hyperbolas intersect (Fig. 7). When the
errors grow to near 10000 m, the cause is due to the
fact that the points of intersection are ambiguous, one
set of points occurring near the receivers and the other
set of points near a distant source. The two sets of
points are separated by about 10000 m. Without fur-
ther information about which cluster of intersections is
correct, we are left with large errors. The importance
of setting the 2D effective speed to equal the 3D effec-
tive speed correctly is important not only for direct-
travel times (Fig. 5), but also for TDOA data. When
TDOAs are derived from the arrival times of electro-
magnetic signals, it is easy to set the 2D effective speed
to be the nominal speed of light. However, in the

ocean and atmosphere, we usually do not know the 3D
effective speed very accurately, which causes large
errors in location.

3.3. Delineating Areas of 2D Models Where Errors
are Acceptably Small

When objects are located with direct-path times,
and when the 2D model’s speed equals the 3D effec-
tive speed, correct locations are only obtained when
the object’s horizontal coordinates are infinitely far
from the instruments (Fig. 5a and Eq. (8)). For loca-
tions derived from TDOA’s, correct locations might be
obtained at infinite distances in certain directions, but
not in other directions where the errors grow with dis-
tance (ridges, Fig. 6a; plateaus Fig. 6b). Suppose we
can accept location errors of the 2D model up to a

maximum threshold equal to E . This determines areas

Table 1. 2D model error in Fig. 6a due only to source being out of 2D model plane. 2D effective speed equals 3D effective speed.
Distances computed with respect to mean horizontal location of receivers. Maximum horizontal distance of any receiver from
mean is 716 m. Corresponding minimum, mean, and maximum errors in interval [0, 716] m are 0.14, 1.3, and at least 1781 m
respectively. Errors are much larger when 2D effective speed is a little less than the 3D effective speed (Fig. 6b)

2D Model errors, m
Distance interval, m
minimum mean maximum
0 to 1999 0.14 15 >1781
1999 to 3999 1 18 >348
4000 to 5998 1 18 >568
5998 to 7998 1 19 >726
7999 to 9997 1 19 >831
ACOUSTICAL PHYSICS Vol.66 No.2 2020
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Fig. 7. Explanation for large errors in Fig. 6b. Four black
dots in center are receivers. Location of source (+) esti-
mated from intersection of three hyperbolas. Hyperbolas
derived from receivers one through three intersect at two
points, one very near the receivers and the other near the
source. Hyperbola derived from receivers one and four also
intersects the hyperbola from receivers one and two at two
points, one near the receivers and one near the source.
These points of intersection do not reveal if the location of
the source is near the points of intersection far or near from
the receivers.

of the 2D surface where acceptable errors are
obtained. These areas are determined as follows.
Errors of the 2D model E(x, y) are computed via sim-
ulation as shown in Secs. 3.2 and 3.3. We receive [ sig-
nal-time data, and compute their locations with the
2D model: (x;, y;), i =1, 2, 3, ...I. We accept the i’th

location when E(x;,y;) < E . Otherwise the datum is
discarded. In this scenario, there remain holes in the
2D model where locations are not estimated because
they have unacceptably large error.

3.4. Hybrid 2D and 3D Location Models

In Sec. 3, signals are located only when their 2D
effective speeds have acceptably small error. Signal
times are discarded when associated errors exceed the
threshold. Instead of discarding these signals, we can
estimate horizontal location with a 3D model, and use
its 2D location. We have to pay the price for comput-
ing 3D locations for some but not all the data.

4. ELIMINATING ERRORS IN FLATLAND
WITH VARIABLE 2D EFFECTIVE SPEED

The previous section quantified errors of location
from 2D models when a single 2D effective speed is

used to estimate location. If we do not wish the reduc-
tion of modeling dimension from three to two to con-
tribute to location error, we must allow the signal
speed to vary with horizontal separation from the
instruments. When we include measurement errors,
variation in signal speed must occur so as to obtain a
reliable confidence interval for location.

Let us define the “valid regions” of a 2D model to
be locations on the 2D surface where a correct loca-
tion is obtained. When the 2D model accounts for
errors in measurements, the valid regions are those for
which a correct confidence interval for location is
obtained without inflating errors contributing to
uncertainty. For example, suppose the only measure-
ment error is the estimate of the TDOA and its actual
uncertainty is 0.01 s. Then if the confidence interval
derived from the 2D model contains the object’s true
location at the specified confidence interval for loca-
tion, the object is in a valid region of the 2D model.
This definition of a valid region excludes the possibil-
ity of artificially inflating the uncertainty of the TDOA
to obtain a reliable confidence interval of location.

Without loss of generality, we assume 2D locations
are on a horizontal x—y plane and the object to be
located has Cartesian coordinates (x, y, z). First, we
explain how the 2D effective speed can be estimated
from the data (Sec. 4.1). Then we explain how these
estimates can be used to estimate location (Secs. 4.2,
4.3, and 4.4).

4. 1. Effective Speed is Function of Measured Signal Time

The idea is to improve the accuracy of locating a
signal by letting the 2D effective speed be a function of
the measured signal time (s). Let U(z, r;) approximate
the 2D effective speed as a function of the measured
signal time 7 and instrument location(s) r; Explicit
dependence of 7 on the object’s location is implied but
not shown. We think of U(z, r;) as a single value, i.e. a
2D effective speed, or more generally a confidence
interval of the 2D effective speed for each horizontal
location in the model plane. A procedure for con-
structing U(7, 1;) is 1) specify locations of the instru-
ments r;, 2) specify a 3D grid of hypothetical object
locations (xy, ¥, 2;), Where the 2D effective speeds are
computed at the instruments, 3) specify the 3D effec-
tive speed c, 4) use Eq. (4) to compute the 2D effective
speed, u(x;, ¥, 2) , for each hypothetical object location
in the grid, and 5) compute U(z, r;) from u(x;, y, 7). Here
is an example. We want a 100% confidence interval for
the 2D effective speed between instrument one and a
fixed horizontal location (x, y;, ;) = (X, Y) in the 2D
model plane. Q values of k yield the same coordinate,
(X,Y), but with different vertical coordinates, z;. The

minimum 2D effective speed at this point, 3, is the
minimum of u(x,, y,, g;,) among all Q vertical coordinates
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Z;59=1,2,3, ... 0. The maximum # is obtained similarly.

The desired confidence interval is U(7, r;) = [z, 41].

4.2. Direct-Path Times

For direct-path times, we receive a measurement of
signal time, then use U(z,r;) to obtain an estimate of
the 2D effective speed. If we desire 100% confidence
intervals for horizontal location, we compute U(z,r)) =

[&2,i4], and draw the annulus about r; whose inner and

outer radii are &7¢ and f¢ respectively. The procedure is
repeated for the signal time measured at a second
instrument, yielding a second annulus. The object’s
horizontal location resides in the intersection of the
two annuli: either one region or two non-overlapping
regions. Data from a third instrument yields a third
annulus whose intersection yields one or two contigu-
ous regions of the plane. If we desire locations with
less than 100% confidence, we repeat the procedure
using p% confidence intervals for U(z, r;). For exam-
ple, ifwe choose p = 95%, then each annulus has prob-
ability 0.95 of containing the true location of the sig-
nal. Each annulus is statistically independent, so the
intersection of three annuli has probability p? of con-
taining the signal’s horizontal location. If we want the
final region to be valid with a probability of P percent
we choose p = P!/3. A geometrical interpretation of
location is made with the picture of intersecting circles
or annuli, the projections of spheres or thick spheres
onto a horizontal plane.

4.3. Time Differences of Arrivals (TDOA)

For TDOA data, the procedure for estimating U(z, r;)
is the same as data for direct-path times. However,
when it comes to locating signals in the 2D plane, the
problem is different: location cannot be interpreted by
intersecting hyperbolas. When the 2D effective speed is
not the same value for each section, we have the problem
of finding the locus of points in space satisfying,

L _ b
czﬂat ‘

LH—hL =

11
CIﬂat ( )
Here, the 2D effective speeds between the object and
receivers 1 and 2 are cly, and c2y,, respectively. If they
are equal, Eq. (11) becomes
L -
h—h= (1 2)3
CIHat

(12)

and multiplying by the denominator yields Eq. (10)
defining the hyperbola: the locus of points in space
whose difference in distance is constant from two
points.

The locus of points in space whose difference in
signal time is constant is an isodiachron, derived from
the Greek words “iso” for same and “diachron” for
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Fig. 8. Geometrical shapes for locating horizontal location
of object in ocean with a 2D model from measurements of
Time Differences of Arrival at two receivers (asterisks)
assuming 2D effective speed is spatially homogeneous
(hyperbola) and inhomogeneous (isodiachron). Receivers
about 4000 m deeper than source (Sec. 4.3). True horizon-
tal location of source is on isodiachron (+).

difference in time [18]. This is a natural geometry for
understanding locations when the effective speeds dif-
fer, as for this 2D location model. Consider its shape
in the ocean where two receivers are on the bottom at
depth 4000 m and on the x axis at 21000 m. The
source is nearby horizontally, (—1500, 500), but not
vertically, because we set its depth to 15 m. The 3D
effective speed is ¢ = 1450 m/s and the 2D effective

speeds are derived with Eq. (4): clg,, =253.33 m/sand

240 = 781.43 m/s respectively. The measured TDOA
i$ 2.7912 — 3.2626 = —0.4714 s. The isodiachron looks
like a circle for this case, and it intersects the true loca-
tion of the source (Fig. 8). The hyperbola is drawn for a
difference of distance given by c(¢; — 1,) = 1450(—0.4714)
m = —683.5. It does not contain the true location (Fig. 8).
Isodiachrons do not always look like circles: some-
times they look ellipse-like and other times even more
convoluted (i.e. Fig. 1b in [18]). Unlike hyperbolas,
they never extend to infinity when the effective speeds
differ: a desirable quality of any geometrical interpre-
tation of location [18].

Confidence limits for direct-path times were
annuli (Sec. 4.2). Isodiachrons do not maintain the
same shape as effective speeds change: we cannot
zoom them in and out as we did for circles to get con-
fidence intervals. Instead, we could choose many pairs
of 2D effective speeds within the desired confidence
interval, and draw the isodiachrons for each realiza-
tion: they will fill a finite region of space, and the real-
izations can be plotted to show corresponding confi-
dence intervals. Alternatively, confidence intervals
could be computed with Sequential Bound Estimation
[4, 19], a technique discussed later.
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4.4. Vertical Coordinate Constraint for Object

We consider how to estimate a reliable confidence
interval for an object’s location with prior information
of its vertical coordinate. The approach is the same as
the previous section except the grid of points,
(x> Vs 2y ), is constrained to a smaller subset of the
vertical coordinate z. For example, suppose we locate
a surface ship: we set z, = 0 where the water surface is
at zero. If we know a whale is in the upper 100 m, the

grid of points only includes values between zero and
100 m depth.

5. RELIABLE CONFIDENCE INTERVALS
FOR LOCATION ACCOUNTING
FOR ALL ERRORS

The previous section quantified errors in 2D loca-
tion when the 2D effective speed is constant. These
errors go to zero if the 2D effective speed is allowed to
vary. This highly idealized scenario was presented to
show why variable propagation speed is needed in the
simplest situation. The purpose of this section is to
show how this effect is incorporated into a model
accounting for all significant phenomena affecting
location, including refraction, diffraction, multipath,
uncertain vertical coordinate of the source, uncertain-
ties in the 3D sound speed field, locations of receivers,
and TDOA measurements. The model is appropriate
for locating real acoustic signals in air and water.

This realistic model yields extremely reliable confi-
dence intervals. They are computed with a non-Bayes-
ian method called Sequential Bound Estimation
(SBE) [4]. It solves the nonlinear equations for loca-
tion without approximation. Analytical solutions for
location are obtained with isodiachrons [18]: we allow
the 2D effective speed to differ between sections and
have uncertainty along each section. Two sections
have probability zero of having the same 2D effective
speed. Because isodiachrons do not extend to infinity,
we are guaranteed locations are finite [18] as long as
we impose finite bounds on all other variables affect-
ing location. The most useful output of SBE is a 100%
confidence interval for location. To date, this interval
always contains the true answer both in tens of thou-
sands of simulations and experiments having indepen-
dent measurements for location of the source [20]. 2D
effective speed is constrained to a finite-width interval
and simulations include deep and shallow water sce-
narios where sound speed varies horizontally and ver-
tically over a wide variety of bottom profiles. The
model was independently tested by the Navy in deep
water [20]. The software is at Transition Readiness
Level 6 [21].

In this paper, inputs to SBE are 100% intervals for
receiver locations, 2D effective speeds between the
source and each receiver, and TDOAs between each
receiver and receiver number one: all are large enough
to contain the true answer. Since there are five receiv-

ers, there are four TDOASs. Bounds for the 2D effec-
tive speed are computed by first computing bounds for
the 3D effective speed. This is done by running
numerous ray or full-wave forward-models for the
study area and tabulating bounds for the first mul-

tipath’s arrival time, [;, f ]. These forward models cap-
ture the plausible variations of the sound speed field
and the vertical coordinate of the source. Since the
forward models specify the distance between the
source and receiver for each scenario, we derive
bounds for the 3D effective speed by dividing each dis-
tance by bounds for arrival time and then converting to
bounds for 2D effective speed with Eq. (4). The for-
ward models are done before the experiment starts.

We need to estimate with data the TDOA corre-
sponding to the first arriving path. This is straightfor-
ward when there are no multipath. When the signals
are coherent enough, cross-correlation is effective.
With multipath, cross-correlation is still useful for
estimating the needed TDOA as long as it is possible to
identify the peak in each cross-correlation function
corresponding to the first arrivals. Since the largest
peak in a cross-correlation function may not corre-
spond to the first-arriving paths, a method is
employed to identify the needed peak using additional
information derived from the auto-correlation func-
tions of the signals at each receiver [22]. This method
works with data.

Before showing results with SBE, we derive the
horizontal locations where a 2D model is valid.

5.1. Valid Locations in 2D Models
for Sequential Bound Estimation

Using Eq. (4), the minimum and maximum 2D
effective speeds are

i=—< (13)

and

(14)

respectively. Bounds for the 3D effective speed, [c, ],
are computed by a model or some other method: they
are guaranteed to contain the true 3D effective speed.
Similarly, bounds for the vertical distance between
source and any particular receiver are specified with

[v,7]. Let }vz be the minimum horizontal distance of a
source from a receiver, by specifying bounds for the

2D effective speed, [u,i]. Invalid regions are the set of

ACOUSTICAL PHYSICS  Vol. 66 No.2 2020



DIMENSION REDUCTION IN LOCATION ESTIMATION

points where the horizontal distance is less than /. We

set / to be the maximum horizontal distance of signal
detection. Then we solve for the maximum 2D effec-
tive speed u from Eq. (14) because all values on its
right side are known. We specify the interval width of
the 2D effective speeds with

du=da—u=f(-2), (15)

where the number fis specified. Larger values of fare
associated with wider bounds. Reliable 2D location
models yield confidence intervals assuming the 2D
effective speed is somewhere within an interval: the
larger the interval, the larger the error of location but
the closer the source can be to a receiver. This is a nat-

ural trade-off. To get ﬁ, we equate du from Eq. (15)

with # —u from Egs. (13), (14), and solve for the
remaining unknown

N £
1%
h=

; (16)

where

=< : (17)

5.2 Example

We assume the acoustic source is between 1 and 100 m
depth with a maximum horizontal detection range of

~

h = 15 km. Receivers are a few hundred meters deeper:
between 280 and 300 m depth. They are situated
within 25 m of the vertices of a pentagon (Fig. 9).

The bounds of the 3D effective speed are ¢ = 1440 and
¢ = 1455 m/s. The maximum 2D effective speed is
computed from Eq. (14) using the minimum vertical

distance between source and receiver: v =280 — 100 =
180 m: we get i =1454.90 m/s.

We specify the interval width for 2D effective speed
using f= 1.2 in Eq. (17). The minimum 2D effective
speed is & = 1436.90 m/s (Eq. 15). Finally, Eq. (16)
yields the minimum horizontal distance of any

receiver to the first valid location: # = 4545.9 m, an
astonishingly large distance for a situation where
receivers are only a few hundred meters deeper than
the source and where the receivers are separated by
many kilometers. Invalid regions are shaded gray (Fig. 9).
If we wanted valid results nearer a receiver, we would
increase f with attendant increase in the confidence
interval for the source’s location.
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Fig. 9. Extremely reliable 100% confidence interval for
source near center (black) computed from TDOAs
between signals from five receivers (asterisks). 2D effective
speed equals zero at asterisks. Receiver’s depths are a few
hundred meters below the source (Sec. 5.2). Invalid
regions of 2D model are gray. Locations computed with
sequential bound estimation and isodiachrons [4, 18].

The significance of utilizing reliable confidence

intervals is better understood by realizing ;1 = 45459
m is not the same as obtained by solving Eq. (4) for A,

h= —Vz , (18)
(o) -
u
and finding its minimum
-—, (19)

yielding 1130.5 m: smaller than 4545.9 m. The value

1130.5 m is only true if the vertical separation is v =
180 m, the maximum 3D effective speed is 1455 m/s,
and the minimum 2D effective speed is 1436.9 m/s. If
we knew these were the only possible values for the

v

vertical separation and 3D and 2D effective speeds, A
= 1130.5 m would be the correct value. However, we
do not know the vertical separation, nor the 3D or 2D
effective speeds. Instead we are only certain they fall
somewhere within their specified intervals. Since we
require an extremely reliable confidence interval, we

enforce their intervals of prior uncertainty, yielding lvz
=4545.9.

TDOAs are assumed to be within =0.02 s of the
true TDOAs. SBE yields a 100% confidence interval
for the source within the x interval [—66.1, 213] m and
the y interval [—-6300, —6110] m (small black rectangle,
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Normalized distance on 2D surface

Fig. 10. 2D effective speeds for planar (dashed) and spher-
ical (solid black) 2D models. Planar 2D effective speeds
computed with Eq. (4) for 3D effective speed ¢ = 1, vertical
offset, v = 0.1, and horizontal axis showing horizontal dis-
tance 4 from instrument divided by v. Spherical 2D effec-
tive speeds computed with Eq. 20 (Sec. 6). Gray curve is
functional form for the radial speed of light in
Schwarzschild’s coordinates for an event horizon of radius
0.01 and a local speed of light equal to one (Sec. 7).

Fig. 9). These contain its true location x = 49.1 m and
= —6210 m. In this case, SBE identifies the location
of the source within the valid regime of the 2D model,
and yields its reliable confidence interval. Our reliable
location algorithm does not use a 2D SBE model to
compute a reliable confidence interval if the source
was in an invalid region. Instead it yields a reliable
confidence interval with its built-in 3D location
model; the hybrid solution discussed in Sec. 3.4.

Invalid regions of the 2D model are close to the
instruments, and the valid regions occur far away (Fig. 9).
The method for determining where 2D models are
valid is applicable at any distance, not just those
treated up to 15 km from the instruments (Fig. 9).

6. OTHER FLATLANDS

Up to this point, we discussed 2D models with pla-
nar coordinates. Sometimes, horizontal coordinates are
desired in latitude and longitude, and the 2D model sur-
face is a sphere or spheroid [ 10]. We discuss the 2D effec-
tive speed for the sphere because it is simpler.

Assume the sphere has radius R and the object to
locate is above the sphere at radius p = r + v with
v = 0. As before, assume the 3D effective signal speed
is ¢. In the context of the 2D model, signals propagate
along great circles of length / on the 2D spherical surface,
instead of straight line segments of planar 2D models
(Sec. 1). The Euclidean distance between the object and

. . 2 27/2
instrument is d = [(psme) + (R —pcoso) } , where

0 is the angle between two line segments, the first
between the sphere’s center and the instrument, and
the second between the sphere’s center and the object.
The horizontal distance of the signal path on the
sphere is 4 = RO. The 2D effective speed for the sphere
is obtained by substituting this # and d into Eq. (3),

cRO

2 2 1/2°
[2R? (1= cosB) + 2vR(1 - cosB) + v ]

Although this 2D effective speed goes to zero when
h goes to zero, its functional form is not the same as
the planar 2D effective speed (Eq. 4). For small hori-
zontal separation, cos® ~ 1 and ugy.. ~ ch/v: the
same form as the planar model to leading order in h

(Eq. 4). If we assume the direct path does not propa-
gate through the spherical surface, a signal is received

when |9| < cosflR/p or h< RcosflR/p. The planar

and spherical 2D effective speeds differ (Fig. 10).
Spherical 2D effective speeds do not exist when

usphere = (20)

h> RcosflR/p = 0.43. Since the figure shows nor-

malized horizontal separation, 4/v, values do not exist
when A/v > 0.43/0.1 =4.3.

When the 2D model surface is a spheroid [10],
there is no closed-form solution for the 2D effective
speed because geodesic length /2 does not have a closed-
form expression. Instead, 2D effective speeds are com-
puted with Eq. (4) and 4 is computed numerically.

7. SUMMARY AND CONCLUSIONS

Signal times have been used for a century to locate
signals on 2D surfaces even though objects are not
usually on this surface. Their ubiquitous use up to the
present suggests correctness of approach [1-6, 9, 13].
However, since it is reasonable to insist correct loca-
tions be obtained from any coordinate system, includ-
ing 2D, we are forced to make the model’s speed
depend on geodesic length between the object and
instrument on the model’s 2D surface. 2D effective
speeds are zero at the horizontal coordinates of the
receivers and monotonically increase to the 3D effec-
tive speed at infinite distance (Eq. 4). The apparent
discovery here of these facts suggests findings in thou-
sands of papers could be re-evaluated. Many results
must be approximately correct, while others must not.
Traditional 2D models yield large errors near the
instruments. An experimentalist naturally places
instruments near signals of interest, thinking errors
will be smaller. This is exactly where the 2D model’s
signal speed goes to zero, leading to large errors with
traditional methods and small errors with non-tradi-
tional methods (Sec. 5). The traditional 2D model
with constant speed is most accurate at distances far
from the instruments only when the 2D effective speed
equals the 3D effective speed and only in certain azi-
muthal directions but not in others where its errors
increase (Fig. 6a). However, if the 2D effective speed
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is slightly different than the 3D effective speed, errors
are much larger and occur over a wider sweep of azi-
muthal directions (Fig. 6b).

Almost all previous 2D models set signal speed to a
constant, independent of an object’s location. In a
small number of cases, 2D models constrain signal
speeds to an interval of finite-width [4, 6], and the
reported interval does not ever appear to include zero.
Furthermore, the interval does not include the signif-
icant effect of signal speed varying with distance from
instruments. When the signal speed is constrained to
an interval, the 2D model can only generate reliable
confidence limits for location in certain areas of the
2D surface (Sec. 4). These are called valid regions of
the model. The complementary regions are invalid. 1
presented one approach to delineate the valid and
invalid regions of 2D models based on sequential
bound estimation and isodiachrons (Sec. 5).

Locations from 2D models can be interpreted geo-
metrically. For direct-path times, geometry is conven-
tional. Locations are visualized by intersecting circles:
the projection of a sphere on a flat surface. For
TDOA, 2D effective speeds can differ by large factors
between the object and each receiver. Location is visu-
alized by intersecting isodiachrons [18]: the replace-
ment for hyperbolas when the propagation speed of
the signal is spatially inhomogeneous. Collapsing a 3D
problem onto 2D eliminates the spatial homogeneity
of signal speed. Geometries are transformed from
shapes invented by ancient Greek mathematicians into
geometries of the modern age wherein locations are
derived with signal times and spatially inhomogeneous
speeds [18, 19].

Errors are not discussed in 2D models for bistatic
data. Signal times are measured between a source,
reflector and a receiver. When they are all on a Euclid-
ean plane, each bistatic measurement of signal time
constrains location of the reflector to an ellipse in the
absence of measurement error. When the reflector is
not in this plane, signal speed must vary with distances
from the instruments to obtain a correct location.
Locations are obtained with analogous approaches
and location can visualized by intersecting isosig-
machrons instead of ellipses [23].

It is showed how a variable 2D effective speed is
incorporated into a 2D model, and how to switch to a
3D model when the 2D approximation cannot be
made valid (Sec. 5). I showed how a combination
2D/3D model can be constructed to yield extremely
reliable confidence intervals for location. The model
works with real data and accounts for real issues that
arise in the air and water such as multipath, inhomo-
geneities in the speed of sound, refraction, uncertain-
ties in locations of the receivers, and measurements of
the TDOA (Sec. 5).

The problems with 2D models are fundamentally
related to issues arising in the transformation of coor-
dinate systems. There are five phenomena that arose
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because of the elimination of the third spatial coordi-
nate. Firstly, locating objects with signal times is sim-
pler in one coordinate frame (3D) than another (2D).
Secondly, a method can be used to infer something
about a larger dimensional coordinate system through
a measurement in the lower dimensional system. For
example, we saw how scientists in Flatland inferred
the existence of a third spatial dimension of the uni-
verse through measurements of signals times on their
2D world (Sec. 2). Thirdly, physics cannot depend on
coordinates and correct location and its correct confi-
dence interval must be independent of coordinate-
frame. The enforcement of this principle led to the
discovery of signal speed varying with distance from an
instrument in 2D coordinates (Sec. 2). Fourthly, the
speed of a signal varies with distance from an instru-
ment in 2D but not in 3D coordinates. Fifthly, the
geometry for interpreting the physics depends on
coordinate system. Hyperbolas are the natural geometry
in 3D space when signal speed is spatially homogeneous.
In the 2D coordinate system, signal speed is spatially
inhomogeneous in the extreme, and isodiachrons are a
natural geometry for interpreting location. It is interest-
ing to see how similar phenomena occur in special rel-
ativity, general relativity (GR), and electromagnetism
due to transformation of coordinates.

The five phenomena above are treated in the same
order. Firstly, Kaluza sent Einstein a letter in 1919
showing how the addition of a fifth coordinate could
simplify physics by unifying electromagnetism and
GR (p. 671 in [24]). Secondly, it is possible to deter-
mine if space is curved using local measurements.
Suppose we live on a 2D surface and wonder if it is a
Euclidean plane or a sphere. We can draw a circle on
this 2D world and measure the ratio of its circumfer-
ence to its radius. If the ratio equals 27, the surface is
flat. Otherwise it is curved (p. 6 in [24]). The measure-
ment is made entirely in the 2D world and the exis-
tence of something otherwise invisible is revealed.
This is like the discovery of a third spatial dimension of
the universe by Flatland-scientists (Sec. 2). Thirdly,
the findings in special relativity are derived by insisting
the speed of light is the same for all coordinate systems
moving with uniform velocity [24]. The variation of
signal speed in 2D models is derived by insisting cor-
rect locations are derived for 2D coordinates.
Fourthly, according to GR, the radial speed of light
varies with distance from a black hole in
Schwarzschild’s coordinates but not in local coordi-
nates [25]. This is discussed below. Fifthly, in GR the
geometry of spacetime is flat in local coordinate sys-
tems but is not-flat in all non-local coordinates such
as Schwarzschild’s [24]. The appropriate geometry
replacing Minkowski spacetime for flat space is Rie-
mannian geometry in non-local coordinates. For 2D
models, the new geometry is the isodiachron.

In Schwarzschild’s coordinates, the radial speed of
light is



190

dar r,
==1-=c, 21
dt ( r) D

where ¢ is time measured by a clock at infinite distance

from the black hole, r is zero at its center, 2nr, is the
circumference of a circle on the event horizon, and ¢ =
299792458 m/s is the speed of light in local coordi-
nates [25]. The decrease in light speed in a gravita-
tional field is experimentally verified, and is known as
the Shapiro effect [26]. In local coordinates the speed
of light is 299792458 m/s, but in Schwarzschild’s
coordinates is zero at the event horizon. The physics
that causes the radial speed of light to vary from zero
to 299792458 m/s is different than the physics that
causes the speed of a signal to vary from 0 to the 3D
effective speed in 2D models. What is not a coinci-
dence is the role of coordinate transformations in
determining how speed varies with location. This is
further illuminated by Professor Khoury who devel-
oped a coordinate system in GR where the radial
speed of light obeys the same functional relationship
with distance as the 2D effective speed given by Eq. (4)
(version 2 of [23]).

In light of the role of coordinate systems and met-
rics in describing similar phenomena in 2D models
and GR, it makes sense to call locations where the 2D
effective speed is zero “2D black holes”. The radius of
their event horizons equals zero. Similarly, we can
refer to invalid regions of 2D models as “2D shadows”.
They always contain one or more 2D black holes. 2D
black holes are not the same as sonic black holes, a
phenomenon predicted by Unruh in 1981, where
sound has difficulty escaping from a current exceeding
the local speed of sound [27]. The 2D shadows are not
the shadow zones of caustics encountered in optics
and acoustics. The ideas in this theoretical paper need
to be evaluated independently with data from past and
future experiments. The methods for treating 2D loca-
tion models are equally applicable to acoustic and
electromagnetic signals.
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