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Abstract—Oscillation and wave excitation processes are investigated in systems with quadratic nonlinearity in
the presence of selective absorption at second harmonic frequency. Specific examples are considered: wave
excitation by sources moving with velocity close to that of natural disturbances in the medium, wave exci-
tation in a plane layer (one-dimensional resonator) by oscillation of one of the walls, and forced oscillations
of two coupled oscillators. It is shown that, as the second harmonic absorption factor increases, the funda-
mental oscillation amplitude grows. Similar relation holds for nondispersive nonlinear waves characterized
by shock wave formation and energy “spread” to higher harmonics. Second harmonic suppression “blocks”
the cascade process of energy transfer toward upper part of the spectrum and “turns off” nonlinear absorp-
tion. Some of the systems under consideration had been implemented and experimentally investigated. Selec-
tively absorbing media designed for high-frequency waves can be considered as metamaterials and synthe-
sized on the basis of corresponding technologies.
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EXAMPLES OF SYSTEMS AND SIMPLFIED 
EQUATIONS

Nonlinear processes studied below and equations
describing them are of fairly general nature. Therefore,
it is desirable to consider examples of actual problems
corresponding to the adopted mathematical model. In
this section, it is shown that there exists a multitude of
concentrated and distributed systems that are ade-
quately described by a pair of coupled nonlinear equa-
tions lying at the basis of subsequent analysis.

First, let us consider wave excitation by distributed
sources moving with velocity close to that of natural
disturbance propagation in the medium. For definite-
ness, consider the problem of thermooptic generation of
sound with allowance for quadratic nonlinearity, which is
described by inhomogeneous wave equation [1]

(1)

Here,  is sound pressure; , , and ε are equilibrium
values of sound velocity, density, and nonlinearity of
the medium;  is the coefficient of thermal expansion;

 is specific heat;  is the averaged Poynting vector
of modulated electromagnetic waves, where averaging
is performed over rapid carrier frequency oscillations.

Let the trace of a light beam move along the  axis,
which lies in the boundary plane between two media
(for example, the air–water interface), so that it is
incident along the  normal from the transparent
medium (air) on the weakly absorbing medium
(water). In this case,

(2)

For simplicity, consider two-dimensional geome-
try of the problem; then, the dependence of all the
quantities on the third  coordinate is ignored. In
Eq. (2),  is the characteristic intensity value at
boundary ,  is the light penetration depth in the
weakly absorbing medium,  is the function describ-
ing light intensity distribution on the surface, and  is
the beam scanning velocity. For accepted form (2), the
right-hand side of Eq. (1) takes the form

(3)

Sources (3) moving with velocity  are “reso-
nant” with the wave traveling in the positive direction
of the  axis. Therefore, the “right-hand” wave is
much more efficiently excited, as compared to the
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678 RUDENKO
“left-hand” one [2–4]. This allows one to seek the
solution to Eq. (1) in the form [1]

(4)

where  is a small parameter. Changing to vari-
ables (4) in Eq. (1), (3) and ignoring small second-
order ( ) and higher-order terms, we obtain

(5)

where  is the detuning. Exactly at reso-
nance, were the natural and forced waves travel with
identical velocities, the detuning is zero.

In the particular case of a periodic distribution of
moving sources along the surface

(6)

(  denotes a complex conjugate term and  is the
imaginary unit) and with neglect of the dependence
on , solution to Eq. (5) can be sought in the form of
two coupled spatial harmonics:

(7)

For complex harmonic amplitudes, we obtain the
following system of equations:

(8)

where . Model (8) is fairly universal; it
may describe a set of other problems of the theory of
nonlinear oscillations and waves.

In the second example under consideration, dis-
tributed sources are absent while wave excitation
occurs in a plane layer (one-dimensional resonator)
through oscillation of one of the walls. The wall parti-
cle velocity varies in time according to periodic law

(9)

the other wall  is immobile. The motion of the
medium in the resonator is described by homogeneous
wave equation (1). In [2–4], it is shown that, for the
given boundary conditions, the problem is reduced to
solving functional equation

(10)

In this equation, unknown function 
describes the form of any of the two nonlinear waves
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traveling in opposite directions. Near the fundamental
resonance , in the case of a har-
monic wall motion law (9), the wave form can be cal-
culated from evolution equation

(11)

Here,  is the “slow” time, which describes the oscil-
lation establishment process, and  is the “fast” time,
which describes high-frequency oscillations [2–4]. As
before, we seek the solution in the form of a sum of two
coupled harmonics:

(12)

Then, we obtain a system of equations

(13)

which differs from Eqs. (8) in notation alone.
The third example is related to a concentrated

(oscillatory) system. Consider two coupled harmonic
oscillators. Each of them can be represented by a point
mass  performing oscillations along the  axis owing
to a spring with stiffness  ( ). The masses are
connected with each other by a third (nonlinear)
spring whose elastic restoring force depends on the
difference between the mass displacements 

as . Periodic external force  is applied to
the first mass.

The Lagrange function of the system described
above has the form

(14)

Let us restrict our consideration to the weak cou-
pling case, where natural frequencies  of the system
little differ from partial frequencies :

(15)

Here, the following notations are used:
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OSCILLATION AND WAVE EXCITATION IN QUADRATICALLY NONLINEAR SYSTEMS 679
Assuming that the coupling factor is small,

(17)

we change to the following normal variables in
Eq. (14) for Lagrange function:

(18)

These variables reduce (accurate to ) both qua-
dratic forms appearing in Eq. (14) to diagonal form:

(19)

Naturally, in derivation of Eq. (19), the nonlinear
term and the driving force are also assumed to be small
quantities on the order of ν, Eq. (17). Equations of
motion corresponding to Lagrange function (19) are
as follows:

(20)

The left-hand parts of Eqs. (20) are independent;
owing to the change to normal coordinates, the sub-
systems formally interact through nonlinear coupling
alone.

We assume that the first subsystem is tuned to fre-
quency , which is approximately identical to exter-
nal force oscillation frequency , whereas the second
subsystem is tuned to frequency . In other words,
the partial frequencies involved in Eqs. (20) are iden-
tical to  and , respectively. Seeking the solution
to Eqs. (20) in the form

(21)

where  are slowly varying amplitudes, we arrive at a
pair of reduced equations, which coincide in form with
Eqs. (8). In this case, the coefficients involved in sys-
tem (8) are expressed as follows:

(22)
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functions by the corresponding frequency values in
Eq. (21), we achieve equality of nonlinear coefficients
denoted by  in system (8), which leads to the evident
energy relation:

(23)

In the absence of external action, from Eq. (23) it
follows that the total energy of first and second har-
monic oscillations is conserved. For displacement
oscillation amplitudes, such a relation does not hold.

It should be added that the problems discussed
above only illustrate the possibilities of using model
equations (8) in acoustics. Evidently, there exists a
great number of oscillatory and wave processes of
other physical nature (e.g., in nonlinear optics, elec-
trodynamics of intense short-wave radiation sources,
and many other fields of physics) that can also be
described by a pair of “reduced” equations for first
and second harmonic amplitudes [5] in the presence
of an external “pumping” source.

ANALYSIS OF EQUATIONS
WITH ALLOWANCE FOR SELECTIVE 

ABSORPTION

Let us consider model (8) with its second equation
including term  responsible for second harmonic
absorption:

(24)

Ways of technical implementation of such an absorp-
tion depend on the specific system structure, and,
hence, consideration of the problem in general form is
of no use. Some examples related to acoustics can be
found in [6–8].

Mathematical model (24) is most conveniently
analyzed using dimensionless variables
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In the system of equations (26), we choose three
constant quantities with dimension of time:

(27)

Since Eqs. (26) cannot be solved in general form,
let us analyze them for several limiting cases differing
in relative values of characteristic times (27).

The problem is stated as follows: to solve Eqs. (26)
with zero initial conditions

(28)

This means that, at the initial instant of time, an
external source pumping energy to the first harmonic
is tuned on. Nonlinearity leads to partial energy trans-
fer to the double-frequency oscillation. The increase
in both harmonic amplitudes is determined not only
by harmonic coupling but also by selective loss. In this
situation, the main problem is related to the effect of
loss on the dynamic balance of oscillation energy.

Equations (26) are written for complex amplitudes.
Subsequent consideration will also need equations for
real amplitudes  and phases  of interacting har-
monics. From Eqs. (26), with the use of substitution

(29)

we obtain

(30)
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(32)

(33)

First, let us consider steady-state oscillations by
assuming that the time derivatives of amplitudes and
phases involved in Eqs. (29)–(33) are zero. In this
case, the system of four algebraic equations is reduced
to a cubic equation in the first harmonic amplitude
squared:

(34)

After solving Eq. (34), it is possible to calculate the
second harmonic amplitude by the formula
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ables through Eqs. (25), for steady-state amplitude
values we obtain

(36)

One can easily show that solution (36) is stable.
Result (36) demonstrates a tendency that is unex-

pected at first glance: as the second harmonic absorp-
tion coefficient  increases, the fundamental fre-
quency oscillation amplitude grows. Such a relation
was mentioned in, e.g., [9, 10], but the authors of the
cited publications considered nondispersive nonlinear
waves characterized by shock front formation and
energy “spread” over higher harmonics. For such
waves, second harmonic suppression “blocks” the
cascade process of energy transfer toward upper part of
the spectrum and “turns off” nonlinear absorption.
This problem was discussed earlier in [11, 12]. Now, it
appears that an increase in energy retained at funda-
mental frequency with increasing nonlinear loss takes
place even in simple nonlinear systems (24) with only
two interacting harmonics [13, 14].

SUPPRESSION OF NONLINEAR 
DISTORTIONS AND AN INCREASE

IN THE Q FACTOR OF A RESONATOR
WITH SELECTIVE LOSS

As shown above, the effect of selective absorption
on the nonlinear interaction process is of general sig-
nificance from the point of view of oscillation and
wave theory. By introducing selectively absorbing ele-
ments in a system (medium), it is possible to control
the energy f luxes. One of phenomena of interest is as
follows. Setting up partial energy transfer from an
acoustic cavity by introducing selective dissipation at
second harmonic frequency, it is possible to consider-
ably increase nonlinear oscillations and raise the
stored energy and the Q factor. The paradoxical effect
of Q factor increase clearly manifests itself in the cases
where higher harmonic frequencies generated in the
nonlinear medium are close to the resonator frequen-
cies. An important example of a system with corre-
sponding properties is an acoustic resonator with
selective loss.

The eigenfrequency spectrum of a resonator with
stiff walls is equidistant; i.e., .
Therefore, the generated harmonic with number  is
the th mode. Therefore, a cascade of nonlinear pro-
cesses causing efficient energy transfer to the upper
part of the spectrum occurs in the resonator. In the
high-frequency region, oscillation energy is strongly
absorbed because of dissipative processes, which are
usually related to viscosity and thermal conductivity of
the medium.

General ideas of wave interaction control by intro-
duction of selective losses are described in [9, 14–16].
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In the case under consideration, it is necessary to
introduce an absorber for frequency ; the second
harmonic suppression stops the cascade process of
energy transfer to the upper part of the spectrum or, in
other words, “suppresses” shock front formation.
Technically, the loss at frequency  can be imple-
mented by either introducing resonant scattering ele-
ments in the medium (e.g., gas bubbles in liquid) or
using selective boundaries (e.g., transparent for 
waves and reflecting all other frequencies [6–8, 16]).

Let us represent the field oscillating between reso-
nator walls  and  as superposition of two
nonlinear waves propagating in opposite directions [2,
4]. Function  describing the “right-hand” particle
velocity wave obeys the equation

(37)

Here,  is the “slow” time describing the setting pro-
cesses in the resonator;  is the “fast” time describing
oscillations;  is the selective absorption factor; and

 is the second harmonic amplitude

(38)

which is preliminarily unknown. Thus, model (37),
(38) has the form of an integro-differential equation.
In the cases where the right-hand side of Eq. (37) is
known, the model takes the form of an inhomoge-
neous Burgers equation.

Let us introduce dimensionless variables

(39)

Here,  is the characteristic “nonlinear” time within
which a wave may develop a discontinuity and  is the
characteristic amplitude. In terms of notation (39),
the model takes the form
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absorption (this refers to quantity ) or to characteris-
tic time  of selective absorption (quantity ).

To calculate the forced oscillation excitation pro-
cess in the resonator, it is necessary to solve Eq. (40)
with zero initial condition . For large
“slow” time values , balance is achieved
between the energy supplied by the source (the oscil-
lating wall) and the three types of loss: viscous, non-
linear, and selective. Analysis is only possible for the
case of steady-state oscillations. Under steady-state
conditions, nonlinearity manifests itself most strongly
and, hence, this case is of most interest.

Let us perform integration by assuming (for sim-
plicity) that viscosity is zero:

(42)
Here, the overbar indicates averaging over the oscilla-

tion period. Constant quantity  is proportional to
the mean wave intensity. We determine it as

 using condition . Then,
the solution has the form

(43)

In Eq. (43), the plus sign is taken for half-period
 and the minus sign for . In the

vicinity of point , a shock front is formed. With-
out considering its structure, we set . Finiteness
of  can be taken into account by the method of
matched asymptotic expansions, which yields small
corrections (under strong nonlinearity conditions) to
energy characteristics of the field.

Figure 1 shows the profiles of one oscillation
period (43) for different values of selective absorption
factor . In the presence of nonlinear
absorption alone ( ), the profile corresponds to
the well-known solution to nonlinear Burgers equa-
tion [14, 15]:
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not grow but an increase is observed in disturbance
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Fig. 1. One-period profiles of one of the two traveling
waves forming the nonlinear field in a resonator with selec-
tive loss D at the second harmonic frequency:
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persists. However, for large values of , the dimen-
sionless value of the jump ( ) is small, as compared
to wave amplitude ; i.e., 

Thus, as  increases, second harmonic amplitude
 corresponding to frequency  considerably

decreases. The onset of this process is shown in Fig. 2.
Suppression of  wave decelerates the energy transfer
to higher harmonics  and, therefore, energy
is accumulated in the fundamental frequency wave, ,
which is almost undamped. An increase in first har-
monic amplitude  is also shown in Fig. 2. In
addition, Fig. 2 shows dependence . The max-
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Fig. 1) is shifted to point , where
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The mean wave intensity also increases with
increasing selective absorption:

(46)
In the case of nonlinear oscillations with complex

spectral composition, the Q factor of the resonator can
be determined as the ratio of maximum velocity per-
turbation in the standing wave, , to velocity
amplitude  of boundary oscillations:

(47)

It is also possible to determine the square of the Q
factor through the mean intensity ratio of these oscil-
lations:

(48)

Both formulas (47) and (48) describe the increase
in the Q factor with increasing selective absorption .

Estimates obtained from these formulas show that,
if the right-hand wall  of the resonator selectively
transmits 98% of incident radiation power at the sec-
ond harmonic frequency to outer space, the Q factor of
the resonator increases by a factor of about 3.5 while
oscillation energy increases by an order of magnitude.
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