ISSN 1063-7710, Acoustical Physics, 2019, Vol. 65, No. 3, pp. 322—333. © Pleiades Publishing, Ltd., 2019.

PHYSICAL FUNDAMENTALS

OF ENGINEERING ACOUSTICS

Forming Low-Frequency Complete Vibration Bandgaps
in a thin Nonmetallic Elastic Metamaterial Plate!

Suobin Li* *, Yihua Dou“, Tianning Chen?, Zhiguo Wan“, Luyan Ju“, Fan Zhang‘, and Xiao Xiao Cui/

4School of Mechanical Engineering, Xi’an Shiyou University, Xi’an, Shaanxi, 710056 China
bSchool of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049 China
“Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi, 710065, China
Beijing Special Engineering Design and Research Institute, Beijing 100028, P. R. China
*e-mail: ziyedeyan @stu.xjtu.edu.cn
Received August 8, 2018; revised November 1, 2018; accepted December 26, 2018

Abstract—Low-frequency vibration-bandgaps in elastic metamaterials open new possibilities to minimize
low-frequency vibration and noise. Unfortunately, fabricating a complete vibration bandgap for low frequen-
cies still represents a challenging engineering task. In this paper, a new type of a low-frequency complete
vibration bandgap in a thin non-metal elastic metamaterial plate is introduced and investigated numerically.
The proposed elastic metamaterial plate consists of decoupling-resonators, which are deposited on a 2D,
locally resonant phononic-crystal plate, made of an array of rubber fillers, which are embedded in a nonme-
tallic plate. The dispersion relationship, the power-transmission spectrum, and the displacement fields for
the eigenmode are calculated using the finite element method. It is shown that coupling between the local
resonance mode of the decoupling-resonators and the Lamb-wave mode of the epoxy plate, consistent with
the modal superposition principle, is responsible for the formation of vibration bandgaps. Moreover, the
equivalent spring-mass system for the coupling-resonators can be decoupled by introducing a rubber filler. In
addition, both longitudinal and the transverse elastic wave bandgaps can be tuned to the same low-frequency
range. As a result, a novel kind of low-frequency complete vibration bandgap, which can damp a low-frequency
elastic wave, is produced. Furthermore, the effects of the decoupling-resonators on the vibration bandgap are
investigated. It is now possible that an elastic metamaterial plate can be dampen with complete low-frequency
vibration bandgaps, which can potentially be used for commercial noise and vibration reduction.
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1. INTRODUCTION

Phononic crystals (PCs) and locally resonant (LR)
acoustic/elastic metamaterial (AMs/EMs) are types of
functional structures that are designed to control
acoustic/elastic waves in liquids/solids. They have
attracted growing interest due to novel physical prop-
erties, such as acoustic/elastic wave bandgaps (BGs),
where acoustic/elastic wave propagation is forbidden
[1-3]. The existence of such BGs enables a variety of
potential applications, in particular noise and vibra-
tion insulation [4—6]. It is known that there are two
mechanisms that lead to the formation of BGs: Bragg
scattering and the Localized resonance (LR). Because
of Bragg scattering, PCs have a structuring period,
which is of the same order as the wavelength of the for-
bidden frequencies. This means that large lattice con-
stants are needed to reduce structural vibrations for
low-frequencies. Unfortunately, this severely restricts
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the application of PCs in the audible frequency-range.
To overcome this limitation, Liu et al. [13] proposed
AMs/EMs, primarily based on the LR mechanism.
The metamaterial consists of a heavy core with a soft
epoxy matrix coating, and the associated wavelength is
two orders of magnitude smaller than the Bragg band-
gaps. A locally resonant bandgap (LRBGs) is related
to the resonance frequency associated with scattering
units, and it depends little on the periodicity and sym-
metry of the structure. Therefore, it is possible to
bypass the limitation of Bragg bandgaps and generate
bandgaps for low frequencies. Many studies of
AMs/EMs have been reported [14—49].

The existence of low-frequency LRBGs enables
elastic metamaterial to reduce low-frequency vibra-
tion and noise [14, 16]. In the past years, many elastic
metamaterials were proposed that contain bandgaps in
the low-frequency range [3—18]. Moreover, a large
number of studies were done on low-frequency band-
gaps in elastic metamaterial plate [19—39] because of
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the many uses of plate structures in engineering. The
elastic wave bandgap is also known as vibration band-
gaps (including longitudinal and transverse wave
bandgaps). Compared with the flat elastic metamate-
rial plate [19—22], the stubbed elastic metamaterial
plate can shift the vibration bandgap to lower fre-
quency range easily. Generally, the stubbed elastic
metamaterial plate contains the one—side or double-
sides elastic metamaterial plate. The one-sided elastic
metamaterial plate consists of a square array of reso-
nators on one side of a homogeneous plate and was
first proposed by Wu et al. [23]. Later, many research-
ers investigated the effects of the resonators on the
bandgap. Pennec et al. [24] and Oudich et al. [25]
demonstrated that the mass effect of the resonators
significantly affects the bandgap with respect to low
frequencies. Zhang et al. [27] studied the geometric
effects of the resonators on the bandgap with simple
tapered resonators, and could produce lower BGs.
Hsu et al. [28] studied bandgaps with simple neck-res-
onators and demonstrated that LRBGs and Bragg BG
scan occur simultaneously. The double-sided elastic
metamaterial plate consists of a square array of reso-
nators on both sides of a homogeneous plate. It was
first proposed by Assouar et al. [30]. The group
demonstrated that it can increase the bandwidth and
lower the bandgaps compared to the one-side elastic
metamaterial plate.

Nevertheless, all the elastic metamaterial plates
[23—37] discussed above were constructed by deposit-
ing one-sided or double-sided resonators on a homo-
geneous plate. Recently, Li et al. [38] proposed a one-
sided elastic metamaterial plate made of a square-
array of simple cylinder-resonators on one side ofa 2D
binary locally resonant PC plate. Compared with the
classical one-sided elastic metamaterial plate, the
bandgap studied in ref. [39] can be shifted to lower fre-
quencies easily.

However, because there are three different modes
for a plate, and they can only be coupled separately to
special resonating modes of the resonators, such as the
gaps for longitudinal elastic wave and transverse elastic
wave plate modes can hardly be overlapped with each
other in lower frequencies due to the coupling of the
equivalent spring-mass system of the resonator, and
thus the lower complete band gaps (including com-
bined longitudinal and transverse wave bandgaps) are
difficult to obtain [48]. As a result, the vibration band-
gaps of these elastic metamaterial plates [23—48] are
usually located in above 300 Hz. However, in practice,
the frequency of most of the ambient vibration is dis-
tributed across a wide frequency-range (from 20 to
250 Hz) [39]. In order to obtain vibration bandgaps in
this frequency range, Zhang et al. [40] proposed a
novel elastic metamaterial plate with periodic spiral
resonators. The group demonstrated that a transverse
elastic wave bandgap can be moved to low frequencies
(about 40 Hz), but a longitudinal elastic wave bandgap
can only be located at higher frequencies. Furthermore,
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they cannot overlap to generate a complete vibration
bandgap in the low-frequency range (below 100 Hz).

Thus, finding a way to adjust both the longitudinal
and the transverse elastic wave bandgaps, such that
they overlap at lower-frequencies, is an important
stepping stone to control vibration. Only few studies
were conducted on complete low-frequency vibration
bandgaps below 100 Hz. In this paper, a novel kind of
low-frequency complete bandgaps (including both the
longitudinal and the transverse elastic wave bandgap)
in an elastic metamaterial plate is introduced and
investigated numerically. The proposed structure con-
sists of decoupling-resonators, which are deposited on
a 2D, locally resonant PCs plate, made of an array of
rubber fillers embedded in an epoxy plate. The rubber
filler and the decoupling-resonators are used to
decouple the spring-mass system of the resonator and
tune the longitudinal and the transverse elastic wave
bandgaps. These can overlap to obtain complete vibra-
tion bandgaps in the low-frequency range. The disper-
sion relationship, the power-transmission spectrum
and the displacement field of the eigenmodes were
calculated using FEM. From this information we
derive the formation mechanism and the composite
taper resonator dependence of bandgaps.

This paper is organized as follows: In Section 2, we
discuss the details of the model and the calculation
method. Section 3 presents the numerical results and
discussions. We then summarize the conclusions in
Section 4.

2. MODEL AND CALCULATION METHOD

The proposed elastic metamaterial plate consists of
a square array of decoupling-resonators on both sides
of a 2D binary, locally resonant PC plate, which is
made of an array of rubber fillers embedded in the epoxy
plate. Figures 1a, 1b show a part of the proposed elastic
metamaterial plate and its unit cell. In the proposed elas-
tic metamaterial plate, the decoupling-resonators consist
ofthe taper cap A and B, which is located on taper A. The
geometrical parameters of the proposed elastic metama-
terial plate are defined as follows. The diameter of the
rubber filler, the epoxy-plate thickness and the lattice
constant are denoted by D, e and a, respectively. The
height and the diameter of the decoupling-resonators are
denoted by /4 (41, for taper A and Ay for taper B) and d (the
upper diameter of composite taper resonators is denoted
by d,,, and the lower diameter is denoted by d,,,,), respec-
tively. The material parameters used in the calculations
are listed in the Table. Both taper A and taper B consist
of rubber and steel, respectively.

In order to investigate the bandgaps and resonant
modes in the proposed elastic metamaterial plate, a
series of the dispersion relationships were calculated
using FEM, based on the Bloch theorem. This
method has been used successfully in previous research
[28, 29]. The commercial software, COMSOL Meta-
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Fig. 1. Schematic of the proposed elastic metamaterial plate: (a) part of the structure, (b) unit cell, (c) front view of the unit cell.

physics version 3.5a was used to implement the FEM
calculation instructions. The single unit cell, shown in
Fig. 1b, is considered in the calculation on account of
the periodicity of the structure. For the calculation of
the band structure, the stress-free boundary condi-
tions were applied to a free surface, and the periodic
boundary conditions were applied to the boundaries
between unit cells and their nearest cells, using the
Bloch theorem

I(kx(l+kya)ui (x’y) (i =Xy, Z) , (1)
where the elastic displacement vector is denoted by u,
the position vectors are denoted by x, y and z, while &,
and k,, are the Bloch wave vectors limited in the irre-
ducible first Brillouin zone (1BZ2). The Bloch calcula-
tion yields the eigenfrequencies and the corresponding
eigenvectors, and the dispersion relationship can be
obtained by changing the wave vector for the first irre-
ducible Brillouin zone.

u(x+ay+a)=e

To further probe the existence of the longitudinal
and transverse elastic wave BGs of the proposed struc-
ture, the transmission spectra for a structure with
6 units in x-direction was calculated using FEM. The
acceleration excitation source is located at the left side
of the finite structure and propagates excitations in the
x-direction. The corresponding transmitted accelera-
tion is recorded on the right side of the structure. The
transmission spectrum is defined as

TL = 1010g(%j, )
o

1

where o, and o; are the output and input accelerations
of the plate, respectively. Finally, the transmission
spectra can be obtained by changing the excitation fre-
quency of the incident acceleration.

3. NUMERICAL RESULTS AND DISCUSSION

The band structures of the proposed elastic meta-
material plate is illustrated in Fig. 2a. The following
structure parameters were used: D =8, e =1, a = 10,
h=5 (hy =hg =2.5mm), d,, =9 and d,,,, = 5 mm.

We found fourteen bands within 0—400 Hz.
Besides the traditional plate modes, which are longi-
tudinal elastic wave modes (mainly the symmetric
Lamb modes, such as S,, S,) and transverse elastic
wave modes (mainly the anti-symmetric Lamb
modes, such as A,), many flat modes (such as S, S;,
Ay, f1, fr, f3, f2), which are the resonant modes of the
composite taper resonator, were found. Five bandgaps
(two longitudinal elastic wave bandgaps, one trans-
verse elastic wave bandgap, two complete vibration
bandgaps) form as a result of coupling the two modes
above. The two longitudinal elastic wave bandgaps
(the blue dashed areas mark the frequency bands with-
out longitudinal elastic wave modes) are due to cou-
pling between the longitudinal elastic wave modes (S,,
S,) and the corresponding flat modes (S;, S;). The
first one ranges from 53 to 103 Hz (between the 5th
and 8th bands), while the second one ranges from 154
to 352 Hz (between the 9th and 14th bands). The
absolute bandwidths for these are 50 and 198 Hz,
respectively. The transverse elastic wave bandgap (the
yellow dashed area marks the frequency bands without
transverse elastic wave modes) is due to coupling
between the transverse elastic wave modes (A,) and
the corresponding flat modes (A,). It ranges from 59
to 318 Hz (between the 6th and 13th bands) with an
absolute bandwidth of 259 Hz. The two complete
vibration bandgaps (the red dashed areas mark the fre-
quency ranges with neither longitudinal nor transverse
elastic wave modes) are due to overlapping first and
second longitudinal elastic wave bandgaps and the
transverse elastic wave bandgap. The first one ranges
from 59 to 103 Hz (between the 6th and 8th bands),
while the second ranges from 154 to 318 Hz (between
the 9th and 13th bands).

The flat modes, f,, /5, f3, fa, Which corresponds to
the flat bands, f, /5, f3, f4, are extracted and displayed
in Fig. 3. The corresponding vibrations of the flat
bands shown in Fig. 3 are mainly the symmetry vibra-
tions of the resonators. For example, mode f; rep-
resents a rotating vibration, which means that no
reacting force acts on the plate. As a result, these flat
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Fig. 2. Schematic of the band structures and the transmission-power spectra of the proposed elastic metamaterial plate: (a) band
structures, (b) transmission-power spectra for longitudinal elastic wave vibration, (c¢) transmission-power spectra for transverse
elastic wave vibration. The inset shows the schematic view of the unit cell of it. The red, blue, and yellow regions denote the com-
plete, longitudinal and transverse elastic wave bandgaps, respectively.
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Fig. 3. The total displacement vector fields for the mode labeled in Fig. 2a: mode f{; mode f,; mode f3; mode f4.

modes do not affect the bandgaps. Although the flat
modes can produce a bandgap due to the resonator,
the bandwidth is zero because no reacting force acts on
the plate. The frequency-ranges for the attenuation
transmission spectrum of the longitudinal vibration is
shown in Fig. 2b, and the transverse vibration, shown
in Fig. 2c, demonstrate a perfect match with the lon-
gitudinal and the transverse elastic wave bandgaps.
This also confirms the formation of the longitudinal
and the transverse elastic wave bandgap of the pro-
posed elastic metamaterial plate. However, the atten-
uation amplitude in the first complete vibration band-
Vol.65 No.3
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gap is larger than the second complete vibration band-
gap, which effectively decreases vibration and noise.
Hence, the following investigations focus only on the
first complete vibration bandgap.

It can be observed that, compared with the “classi-
cal” elastic metamaterial plate, by introducing the
composite taper resonators, the locations of both the
longitudinal elastic wave and transverse elastic wave
bandgaps are lowered. However, the transverse elastic
wave bandgap always overlaps with the second longi-
tudinal elastic wave bandgap. After introducing the
rubber filler, the location of the longitudinal elastic
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wave bandgap is kept stationary, but the transverse
elastic wave bandgap is shifted to lower frequency
(59 Hz) and overlaps with the first longitudinal elastic
wave bandgap. Finally, a complete vibration bandgap
is generated for low frequencies (below 100 Hz).
Therefore, the composite taper resonators directly
lowers the location of the longitudinal elastic wave-
bandgaps (53 Hz), while the rubber filler directly low-
ers the location of the transverse elastic wave bandgaps
(59 Hz). This causes the transverse elastic wave band-
gaps to overlap with the first longitudinal elastic wave
bandgap, which produces a complete vibration band-
gap for lower frequencies.

A. Forming Mechanisms
of the Low-Frequency Vibration Bandgaps

To study the physical mechanism for the occur-
rence of the complete low-frequency vibration band-
gap in the proposed elastic metamaterial plate, several
specific resonance modes (A,, S,), which correspond
to the lower edge of the first vibration bandgap (longi-
tudinal and transverse elastic wave bandgaps), and
several specific traditional plate modes (A,, S,), which
correspond to the upper edge of the first vibration
bandgap (longitudinal and transverse elastic wave
bandgap), are extracted.

Figure 6 shows the magnitude of the total displace-
ment vector of a unit cell of the proposed elastic meta-
material plate (Fig. 6a), the transition elastic metama-
terial plate (Fig. 6b), and the classical elastic metama-
terial plate (Fig. 6¢), respectively. They correspond to
the upper and lower edges of the transverse elastic
wave bandgap for each structure. The mode A4, is an
anti-symmetric Lamb mode of the epoxy plate. The
epoxy plate vibrates along the z-axis, while the resona-
tor remains stationary. For these frequencies, the anti-
symmetric Lamb mode is activated, and the transverse
elastic wave propagates through the elastic metamate-
rial plate as a anti-symmetric Lamb mode. When the
frequency of the transverse elastic wave approaches
the first natural frequency of the composite taper res-
onator, the resonant mode A, becomes active. The
composite taper resonator vibrates along the z direc-
tion and generates a reaction force on the plate and
prevent the plate vibrates in z direction. In this case,
the transverse elastic wave cannot propagate through
the elastic metamaterial plate. As a result, a transverse
elastic wave bandgap appears. Within the transverse
elastic wave bandgap, the reaction force still acts on
the plate and prevents the transverse elastic wave from
propagating. When the frequency of the transverse
elastic wave deviates from the natural frequency of
mode A,, using the modal superposition principle [41]
we can formulate:

Z=Ma, AL+ MNa, A+ +Ma, A, 3)

SUOBIN LI et al.

where z denotes the response of the plate and My,
denotes the modal participation factor for mode A,
The modal participation factors n,; for mode A,
decrease and weaken the reaction force until it disap-
pears. Then, the anti-symmetric Lamb mode A, is
released again. As a result, the transverse elastic wave
bandgap closes.

Details of the transverse elastic wave propagation
that form the transverse elastic wave bandgap are
shown in Fig. 7. The frequency range (0—600 Hz) is
divided into five intervals (®;, ®,, ®;, @4, ®s). The
excitation frequency starts at 0 Hz and gradually
reaches 600 Hz:

(1) Interval ®,, When the excitation frequency
increases, the modal participation factor n,_,_, of the
anti-symmetric Lamb mode A_; increases. This
causes the anti-symmetric Lamb mode A_; to be
amplified and converted into the main mode of the
system. For certain frequencies (interval ®,), the anti-
symmetric Lamb mode A_; becomes active and the
transverse elastic wave propagates through the elastic
metamaterial plate in the anti—symmetric Lamb
mode A_,. This way, no transverse elastic wave band-
gap is produced.

(2) Interval m,. When the excitation frequency
increases, the modal participation factor n,_,_, of the
anti—symmetric Lamb mode A_; decreases but the
modal participation factor M, .+, of the anti-sym-
metric Lamb mode A,, increases. This causes the
anti-symmetric Lamb mode A, to be amplified and
converted into the main mode of the system. For cer-
tain frequencies (interval ®,), the anti-symmetric
Lamb mode A,; becomes active and the transverse
elastic wave propagates through the elastic metamate-
rial plate in the anti-symmetric Lamb mode A . This
way, no transverse elastic wave bandgap is produced.

(3) Interval ®;. When the excitation frequency
increases, the modal participation factor n,_,_; and
Na+1+1 decrease, but the modal participation factor
Nan of the resonant mode A, increases. This causes
the resonant mode A, to be amplified and converted
into the main mode of the system. Towards the end of
the frequency range (intervals ;), the composite
taper resonator vibrates along the z direction and gen-
erates a reacting force to the plate, and against the
plate vibrates along the z direction. In this case, the
transverse elastic wave cannot propagate through the
elastic metamaterial plate. As a result, a transverse
elastic wave bandgap opens up.

(4) Interval ®,. When the excitation frequency
increases, the modal participation factor M, ;
Na+ 1+ 1 and N, decrease but the modal participation
factor n,,, of the resonant mode A, is larger than the
modal participation factor N,_,_; and Ny, 4+, This
causes the resonant mode A, to continue to act as a
main mode of the system. For certain frequencies
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Fig. 4. Schematic of the band structures and the transmission-power spectra of the “transition” elastic metamaterial plate:
(a) band structures, (b) transmission-power spectra for longitudinal elastic wave vibration, (c) transmission-power spectra for
transverse elastic wave vibration. The insets show a schematic of the unit cell. The red, blue and yellow regions denote the com-
plete, longitudinal and transverse elastic wave bandgaps, respectively.

(interval m,), the reacting force still acts on the plate
and prevents the propagation of the transverse elastic
wave. When the frequency of the transverse elastic
wave deviates from the natural frequency of mode A,
the modal participation factors mny,;, for the mode A,
becomes small and weakens the reaction force until it
disappears. Then, the anti-symmetric Lamb mode A,
is released again. As a result, the transverse elastic
wave bandgap closes. This formation mechanism for
the transverse elastic wave bandgaps is shown in Fig. 8.
As the frequency of the transverse elastic wave deviates
from the natural frequency of the resonator mode, its
modal participation factors decreases (the modal par-
ticipation factor 1n,,; of the resonant mode A, changes
from one to zero) and generates a reaction force that
decreases until it disappears. Then, the transverse
elastic wave bandgap closes.

In other words, the transverse elastic wave bandgap of
the system appears because of the coupling between the
flat mode A, and the anti-symmetric Lamb mode A,.
This process follows the modal superposition principle.

The opening location of the transverse elastic wave
bandgap is determined by the natural frequency of the
resonant mode A,. The vibration process of the reso-
nant mode A, can be regarded as a mass-spring system—

ACOUSTICAL PHYSICS  Vol.65 No.3 2019

see Fig. 6. For the classical and the transition elastic
metamaterial plates, the rubber taper acts as a spring,
while the steel taper acts as a mass. Because the rubber
taper is less stiff than the cylinder rubber, the opening
location of the transverse elastic wave bandgap shifts
to lower frequencies. For the proposed elastic meta-
material plate, the displacement fields are distributed
among all composite taper resonators and produces an
analogous-rigid mode for all composite taper resona-
tors. This occurs because the whole composite taper
resonator bulk moves along the z-axis. As a result, the
rubber filler acts as a spring and the whole composite
taper resonator bulk acts as a mass. Thus, the frequen-
cies decrease.

Figure 9 shows the magnitude of the total displace-
ment vectors for a unit cell of the proposed elastic
metamaterial plate (Fig. 9a), the transition elastic
metamaterial plate (Fig. 9b) and the classical elastic
metamaterial plate (Fig. 9¢), respectively. These cor-
respond to the upper and lower edges of the first lon-
gitudinal elastic wave bandgap for each elastic meta-
material plate. The mode S, represents a symmetric
Lamb mode of the plate. The epoxy plate vibrates
along the xy-plane, while the resonators swing in the
opposite direction. For certain frequencies, the sym-
metric Lamb mode S, becomes active and the longitu-
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Fig. 5. Schematic of the band structures and the transmission-power spectra of the “classical” elastic metamaterial plate: (a) band
structures, (b) transmission-power spectra for longitudinal elastic wave vibration, (c¢) transmission-power spectra for transverse
elastic wave vibration. The insets show a schematic of the unit cell. The red, blue, and yellow regions denote the complete, lon-
gitudinal and transverse elastic wave bandgaps, respectively. d, = 7 mm.
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Fig. 6. The total displacement vector fields of the modes (resonant mode A, and anti-symmetric Lamb mode A,): (a) corresponds
to Fig. 2a, (b) corresponds to Fig. 4a, and (c) corresponds to Fig. 5a.

ACOUSTICAL PHYSICS  Vol. 65

No. 3

2019



FORMING LOW-FREQUENCY COMPLETE VIBRATION BANDGAPS 329

a b
600 ‘ @ 60 o
\ 3
\
I \
500 | A,
| 5
|
400 * | ‘\ - 40 O}
|
N \ N
m | :
§ 300 § \
= A L \
‘ A
200 i 20 ¢ | 1
0
100
0 L | L ““‘l“"‘v 1 | ! | ! | 1 |] O | | 1 L
M r X M M M

Reduced wave vector

Reduced wave vector

Fig. 7. Propagation of the transverse elastic wave during the formation of a transverse elastic wave bandgap.

dinal elastic wave propagates through the elastic meta-
material plate as a symmetric Lamb mode. When the
frequency of the longitudinal elastic wave approaches
the first natural frequency of the resonator, the reso-
nant mode S, becomes active. The resonators swing
along a plane, which is vertical to the xy-plane. This
produces a reaction force on the plate to prevent the
plate from vibrating along xy-plane. In this case, the
longitudinal elastic wave cannot propagate through
the elastic metamaterial plate. As a result, a longitudi-

Fig. 8. Formation mechanism for the transverse elastic
wave bandgaps.
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nal elastic wave bandgap appears. Within the longitu-
dinal elastic wave, the reaction force still acts on the
plate and prevents the longitudinal elastic wave from
propagating. When the frequency of the longitudinal
elastic wave deviates from the natural frequency of the
resonant mode S;, using the modal superposition
principle [41], we can formulate:

Xy =Mg, S +Ms,, Sy +...+ Mg, S, 4

where xy denotes the response of the plate and ng,,
denotes the modal participation factor of the mode S,,.
The modal participation factor ng;, of the mode S,
becomes small and weakens the reaction force until it
disappears. Subsequently, a symmetric Lamb mode S,
is released again and, as a result, the longitudinal elas-
tic wave bandgap closes.

Details of the longitudinal elastic wave propagation
for the formation of a longitudinal elastic wave bandgap
are shown in Fig. 10. The frequency range (0—600 Hz) is
divided into six intervals (®;, ®,, M3, W,, Ws, Wy). The
excitation frequency starts at 0 Hz and gradually
reaches 600 Hz:

(1) Interval ®;,. When the excitation frequency
increases, the modal participation factor ng_,_; of the
symmetric Lamb mode S_, increases. This causes the
symmetric Lamb mode S_; to be amplified and con-
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Fig. 11. Formation mechanism of the longitudinal elastic
wave bandgaps.

verted into the main mode of the system. For certain
frequencies (interval ®,), the symmetric Lamb mode
S_, is active and the longitudinal elastic wave propa-
gates through the elastic metamaterial plate as a sym-
metric Lamb mode S_,. As a result, no longitudinal
elastic wave bandgap appears.

(2) Interval ®,. When the excitation frequency
increases, the modal participation factor Ng.;
decreases but the modal participation factor ng;; of the
resonant mode S, increases. This causes the resonant
mode S, to be amplified and converted into the main
mode of the system. Towards the end of the frequency
range (interval ®,), the composite resonator swings
along a plane, which is vertical to the xy-plane. This
produces a reaction force on the plate that prevents the
plate from vibration along the xy-plane. In that case,
the longitudinal elastic wave cannot propagate
through the elastic metamaterial plate. As a result, a
longitudinal elastic wave bandgap appears.

(3) Interval ®;. When the excitation frequency
increases, the modal participation factors Mg, |+ ; and
Ts;; decrease but the modal participation factor ng;; of
the resonant mode S; becomes larger than the modal
participation factor g, | + ;- This causes the resonant
mode S, to continue to act as a main mode of the sys-
tem. For certain frequencies (interval m;), the reaction
force still acts on the plate and hinders the propagation
ofthe longitudinal elastic wave. When the frequency of
the longitudinal elastic wave deviates from the natural
frequency of the mode S, the modal participation fac-
tor ng;; for mode S, decreases and weakens the reac-
tion force until it disappears. Subsequently, the sym-

Table 1. Material parameters used for the calculations
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metric Lamb mode S, is released again. As a result, the
longitudinal elastic wave bandgap closes. This forma-
tion mechanism for the longitudinal elastic wave
bandgaps is shown in Fig. 11. As the frequency of the
longitudinal elastic wave deviates from the natural fre-
quency of the resonator mode, the modal participa-
tion factors become smaller (the modal participation
factor ng,; of the resonant mode S, decrease from one
to zero) and causes the reaction force to decrease and
disappear. Hence, the longitudinal elastic wave band-
gap closes. It expressed as the end of a finite periodic
structure changes from rest to motion.

As a result, we conclude that the longitudinal elas-
tic wave bandgap of the system is formed due to cou-
pling between the flat mode S, and the symmetric
Lamb mode S,—based on the modal superposition
principle.

The opening location of the longitudinal elastic
wave bandgap is determined by the natural frequency
of the resonant mode S,. The vibration process for the
resonant mode S, can be understood as a mass-spring
system (see Fig. 9). For the proposed elastic metama-
terial plate, the rubber taper acts as a spring, and the
steel taper acts as a mass. Because the rubber taper is
less stiff than the rubber cylinder, the opening location
of the longitudinal elastic wave bandgap decreases.

Two low frequency vibration bandgaps (the longi-
tudinal elastic wave bandgap and the transverse elastic
wave bandgap) overlap to form a low-frequency com-
plete vibration bandgap, where both the longitudinal
and the transverse elastic wave are not allowed.

B. Effect of the Decoupling- Resonators
on the Vibration Bandgaps

To obtain a lower and a larger frequency bandgaps,
we investigate the effect of the decoupling-resonators
on the vibration bandgaps of the proposed elastic
metamaterial plate in more detail. In particular, the
effect of steel taper height on the vibration bandgaps is
examined.

First, we investigate the effect of steel tappr height
on the first transverse elastic wave bandgap. Figure 12
shows the evolution of the first transverse elastic wave
bandgap as a function of the steel taper height 4. We
can find that, with increasing steel taper height, the
lower edge of the first transverse elastic wave bandgap
shifts to lower frequencies, while the upper-edge shifts
to lower frequencies first but then to higher frequen-

Material Mass density, kg/m?> Young’s modulus, 10 N/m? Poisson’s ratio
Epoxy 1180 4350 0.3679
Steel 7800 210000 0.29
Rubber 1300 0.1175 0.47
ACOUSTICAL PHYSICS Vol.65 No.3 2019
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Fig. 12. Evolution of the first transverse elastic wave band-
gap in the proposed elastic metamaterial plate as a function
of steel taper height.
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Fig. 13. Evolution of the first and second longitudinal elas-
tic wave bandgap in the proposed elastic metamaterial
plate, as a function of the steel taper height.

cies. This causes the bandwidth to become wider, and
the gap location shifts to lower frequencies.

The above effect can be explained using the dis-
placement fields of the flat mode A,, which corre-
sponds to the lower edge of the transverse elastic wave
bandgap with different steel taper heights. It can be
seen in Fig. 12 that, when the steel taper height
increases, the resonant vibration of the composite res-
onator behaves like an “analogous-rigid mode” of the
whole decoupling-resonators because its bulk moves
along the z-axis direction. As the height of the steel
taper increases, the lumped mass increases, while the
spring stiffness keeps constant. Furthermore, the
lower edge of the transverse elastic wave bandgap shifts
to lower frequencies, and the coupling between the flat
mode A, and the anti-symmetric Lamb mode A,
increases. Ultimately, the bandwidths of the transverse
elastic wave become wider.

Next, we studied the effect of the steel taper height
on the first and second longitudinal elastic wave band-
gaps. Figure 13 shows the evolution of the first and the
second longitudinal elastic wave bandgaps as a func-
tion of the steel taper height A4 Clearly, as the steel

SUOBIN LI et al.

taper height increases, both the lower and the upper
edges of the first and second longitudinal elastic wave
bandgaps shift to lower frequencies before they move
to higher frequencies. For example, when the steel
taper height is less than or equal to 3 mm, the lower
edges shift to lower frequencies with increasing steel
taper height. However, when the steel taper height is
larger than 3 mm, their lower and upper edges shift to
higher frequencies.

These phenomena can be explained using the dis-
placement fields of the flat mode S;, which corre-
sponds to the lower edge of the first longitudinal elas-
tic wave bandgap with different steel taper heights. It
can be seen in Fig. 13 that, when the steel taper height
increases, the resonant mode of the decoupling-reso-
nators vibrates as bending vibration before it vibrates as
an analogous-rigid mode of the resonator, along the
xy-plane. For the first mode, the rubber taper stub acts
as a spring, while for the latter, the rubber filler acts as
a spring. Compared to these, the rubber filler in the
xy-plane is stiffer than the rubber stub, and the cou-
pling between the flat mode S, and the Lamb mode S,
increases. This causes the longitudinal elastic wave
bandgap to shift to higher frequencies and increase the
bandwidth.

4. CONCLUSIONS

In this paper, a novel kind of a low-frequency com-
plete vibration bandgap in an elastic metamaterial
plate, which consists of a decoupling-resonators
deposited on a 2D locally resonant PCs plate, was
introduced and studied numerically. The following
conclusions can be drawn.

The coupling between the local resonance mode of
the decoupling-resonators and the Lamb wave modes
(longitudinal and transverse elastic wave modes),
which obeys the modal superposition principle, is
responsible for the formation of the vibration band-
gaps (longitudinal and transverse elastic wave band-
gaps).

The equivalent spring-mass system of the cou-
pling-resonators can be decoupled by introducing a
rubber filler, and the longitudinal and the transverse
elastic wave bandgaps can be shifted to the same low-
frequency range.

The transverse and the longitudinal elastic wave
bandgaps can overlap. As a result, a low-frequency
complete vibration bandgap, which ranges from 59 to
103 Hz, is obtained.

The effect of the decoupling-resonators on the
vibration bandgaps is investigated. Our results show
that the location of the complete vibration bandgaps
can be shifted to a significantly lower frequency-
range, and the bandwidth can be expanded into a
much larger frequency range by introducing different
decoupling-resonators.

ACOUSTICAL PHYSICS  Vol. 65
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FORMING LOW-FREQUENCY COMPLETE VIBRATION BANDGAPS

The proposed elastic metamaterial plate provides

an effective way, for elastic metamaterial plates, to
produce complete vibration bandgaps for low frequen-
cies. These results open new possibilities for commer-
cial vibration and noise reduction.
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