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Abstract—Studying the interaction of sound with a coated cylindrical shell immersed in water is essential for
improving existing underwater target detection and classification algorithms. According to the impedance
theory of sound scattering, in vacuo structural admittance describes the relationship between the sonar-
induced forces and the resulting vibration on the surface, which can be used to solve the problem of the acous-
tic scattering and radiation. In this work, we investigate numerically and theoretically the structural admit-
tance of a coated cylindrical shell. Analytical expressions of the structural admittance are derived for different
external forces: a plane acoustic wave, a normal point force, and a random noise field. The structural admit-
tance is also numerically evaluated. The results show that the structural admittance is independent of exterior
medium and fluid loading. According to the impedance theory of sound scattering, the scattered field of a
coated cylindrical shell is calculated by combining the structural-, acoustic-, and internal-admittance matri-
ces. Because of the non-local property of structural surface admittance, we build an algebraic model of a
coated object by nonlinear curve fitting and study a local approximation of the structural admittance. We also
find that simplifying the large matrices is useful for research on structural vibrations. Thus, this work presents
a systematic study of the acoustic scattering characteristics of structural admittance of an infinite, coated
cylindrical shell.
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INTRODUCTION
The impedance theory of sound scattering formu-

lated by Bobrovnitskiĭ [1, 2] brings a new approach to
the study the underwater acoustic scattering charac-
teristics of a coated submarine, which is a vital con-
cern. The scattering problem is described by the struc-
tural, the acoustic, and the internal impedances. The
structural impedance characterizes the response of the
elastic body in vacuum and so, depends only on the
object’s structural parameters. The acoustic and the
internal impedances depend only on the body geome-
try and the f luid properties. Numerical methods, such
as the finite element method (FEM) and the boundary
element method, can be used to find these imped-
ances [3–5]. The Bobrovnitskiĭ theory, therefore,
gives a concise, clear physical description of the prob-
lem and facilitates the mechanism analysis thereof. It

also has been used to optimize surface coatings to
reduce the scattered field signatures [6–8].

By considering the key role of the structural
impedance in solving the scattering problem [9],
Rakotonarivo et al. proposed a method to estimate the
structural impedance matrix that uses the correlation
of random noise, which was validated by a tank exper-
iment [10, 11]. As the inverse of a structural imped-
ance matrix, the structural-admittance matrix rep-
resents the normal velocity response on the surface of
an object subjected to a normal point force. Its diago-
nal elements are the self-admittance, and the off-diago-
nal elements are the mutual admittance. From the per-
spective of operability, Williams et al. obtained the struc-
tural-admittance matrix of a spherical shell by using
random sources in a non-anechoic room [12, 13].

Numerous works have been published about local
impedance of underwater anechoic coatings [14], and1 The article is published in the original.
14
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Fig. 1. Coated cylindrical shell excited by (a) a plane wave, (b) a normal point force, and (c) a random noise field.
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such impedances are often measured in 1water-filled
tubes [15–17]. Nevertheless, their non-local property
is non-negligible and is of concern [18]. Faverjon et al.
[19, 20] constructed an equivalent acoustic impedance
model for a soundproofing scheme of a three-dimen-
sional porous medium, and Yang et al. [21] further
demonstrated that the non-local property of acoustic
impedance strongly affects acoustic scattering, which
means that mutual admittance is required to ensure
that the scattered field is accurately computed.

Motivated by the results of Bobrovnitskiĭ and Wil-
liams, the present work investigates the characteristics
of in vacuo structural admittance of infinite, coated
cylindrical shells to lay the groundwork for the further
research on the scattering of more complex coated
objects. We derive analytical expressions of the struc-
tural admittance of a coated cylindrical shell for vari-
ous external forces, and give numerical evaluations of
the structural admittance. The scattered field is deter-
mined. An algebraic model and the approximation of
the structural admittance are studied. Finally, conclu-
sions are drawn and the main results are summarized.

ANALYTICAL EXPRESSION
OF STRUCTRUAL ADMITTANCE

Analytical expressions of the structural admittance
of a coated cylindrical shell are derived for various
external forces: a plane acoustic wave, a normal point
force, and a random noise field. The first two cases are
used for theoretical analysis and the last one—for the
simulation.

Firstly, consider a coated elastic cylindrical shell
with a circular cross-section and a given incident plane
wave of angular frequency ω propagating in the hori-
zontal direction. A cylindrical coordinate system 
is adopted in the model, as shown in Fig. 1a. The inte-
rior of the shell is a vacuum. The external radius of the
coating and the external and inner radii of the shell are
denoted a, b, and c, respectively. The coating and the
shell labeled 1 and 2, respectively, are described by the

( )φ,r
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densities , Young’s modulus  and Poisson’s ratio
. The exterior f luid is described by the density ,

sound velocity , and wave number . The

time dependence  is not explicitly written.
In the outer medium, the incident plane wave is

written as

(1)

The scattered field is written as

(2)

where the functions  and  refer to the Bessel
function and the Hankel function of the first kind of
order , respectively.  is the scattering coefficient of
the structure.

According to elasticity theory [22, 23], the elastic
waves in the solid can be expressed by the displace-
ment potentials  and  as follows:

(3a)

(3b)

where the function  refers to the Neumann function,
are the wave numbers of the compression and

shear waves in the coating and shell, and 
are the modal coefficients.

Then,  is determined from the boundary condi-
tions [23]. The reader can refer to the literatures [10,
23] for the detailed derivations. The analytical solution
of the scattered field is determined by Eq. (2). The
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normal velocity on the external surface follows from
Euler’s equation:

(4)

According to the impedance theory of sound scat-
tering [1, 10], the modal coefficients of the structural
admittance are calculated as follows:

(5)

which are the reciprocal of the modal coefficients of
the structural impedance (see Eq. (11) in [10]). The
structural admittance is independent of the exterior fluid
medium and may be obtained in a random noise field.

The structural admittance is calculated from the
modal coefficients in Eq. (5) by using the inverse Fou-
rier transform:

(6)

Therefore, the relationship between the total pressure
and the normal velocity on the surface satisfies

(7)

Secondly, as the inverse of the structural imped-
ance matrix, the structural-admittance matrix rep-
resents the normal velocity response on the surface of
an object subjected to a normal point force. Its diago-
nal elements are the self-admittance, and the off-diag-
onal elements are the mutual admittance. The analyt-
ical expression for the structural admittance can be
derived for a single point excitation.

Consider the two-dimensional coated cylindrical
shell excited by a normal point force, as shown in Fig. 1b.

The point force located at  can be written as

(8)

Similarly, the coefficients  are also

obtained from the boundary conditions. The normal
velocity on the surface of the coating is

(9)
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The structural admittance is

(10)

After a few manipulations, it is easy to see that Eqs. (6)
and (10) are the same, which shows that the structural
admittance is independent of the exterior medium and
fluid loading.

Finally, an encompassing and spatially random
noise field is simulated by using the finite-element
software COMSOL Multiphysics [10, 12], whose
schematic diagram is shown in Fig. 1c. Taking the
pressure and normal velocity on the external surface of
coating, the cross-correlation matrices are obtained by

the average of  realizations  [24]:

(11)

where the superscript * stands for the conjugate trans-

pose. The inverse of the factor  is then computed by
using a singular value decomposition (SVD). In line with
Eq. (7), the structural admittance is solved by [12]

(12)

where we used the  eigenvalues ,

and column eigenvectors  and . A small eigenvalue

may cause a calculation error. As opposed to the first two
analytical methods, the method using the correlation of
random noise can determine the structural admittance of
an elastic object of arbitrary geometry.

NUMERICAL EVALUATIONS
OF STRUCTURAL ADMITTANCE

The cylindrical shell has an outer radius b = 0.5 m,

thickness  = 5 mm, and the ratio  = 1%. The

coating has a thickness  = 5 cm. The coating material

is neoprene, which has a Young’s modulus  = 4 ×

108 Pa, a density  = 1300 kg/m3, and a Poisson’s ratio

 = 0.49 [25]. The cylindrical shell is steel with =

210 GPa,  = 0.3, and  = 7800 kg/m3, and the

external f luid is water with  = 1500 m/s and =

1000 kg/m3.

Whether a point force or a plane wave, the exciting
forces can be expanded into a Fourier series, and their
structural admittances are the same. For a cylindrical
shell, Fig. 2 displays the analytical drive-point admit-

tance (  = 0°) and mutual admittance (  = 180°) ver-
sus frequency, which are compared with the numerical

results obtained by FEM. The arc angle  denotes the
distance of mutual admittance between the drive point
and the receiving point. An angle of 0° represents the
driving-point admittance (or self-admittance).
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Fig. 2. Structural admittance of the coated cylindrical shell (a) at  = 0° and (b) at  = 180°.
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The analytical admittance is consistent with the
numerical results, which verifies the analytical meth-
ods. The peaks are the resonance frequencies of the
flexural modes on the shell, the width of which is
related to the structural loss [12]. The wavelength at the
resonance frequencies is related to the perimeter of the
shell. In addition, some special peaks appear at 1740,
2461, 5502.5, 7174.3, and 8872.3 Hz. Figures 3b–3f show
the magnitude of the displacements and deflection,
and Fig. 3a shows the vibration at the common reso-
nance frequency 1620 Hz. The common resonance in
Fig. 3a is the high-order f lexural resonance,
whereas those in Figs. 3b–3f are low-order f lexural
resonance (zeroth to fifth order). The low-order
modes have strong radiation efficiency at the reso-
nance frequencies.

The structural admittance of uncoated and coated
cylindrical shells as a function of frequency and arc
angle are calculated analytically and shown in Fig. 4.
The blue striped areas in Fig. 4 with smallest values,
where the mutual admittance tends to zero, corre-
spond to nodal areas on the shell, and the red areas
with greatest values are the anti-nodal regions, which
oscillate as a function of angle.

Some resonance modes of the cylindrical shell are
shown in Fig. 3 and their resonance frequencies corre-
spond to the peaks in Fig. 2. For a coated cylindrical
shell, one striking difference is that the bright stripes
are darker and the blue striped areas are broader, espe-
cially at high frequencies, which indicates that the
magnitude of the structural admittance decreases.
When the frequency is constant, the mutual admit-
tance decreases with increasing arc distance, which
indicates that the coating suppresses vibrations at high
frequencies. In addition, a bright stripe appears at
1087 Hz. The structural displacements of coated
cylindrical shell at 1087 Hz is similar to the resonance
of the uncoated shell at 1740 Hz in Fig. 3b. This result
shows that the equivalent shell mass increases because
ACOUSTICAL PHYSICS  Vol. 65  No. 1  2019
of the coating, so the resonance frequency redshifts.
Similar phenomena occur at other low-order reso-
nance frequencies, but are not obvious in Fig. 4b
because the resonances are relatively weak.

In the simulated random noise field, the pressure
and normal velocity on the structural surface are used

to construct the matrices  and . To invert

 by using the truncated SVD of Eq. (12), we must

carefully choose , which is the number of singular
values admitted at each frequency of interest [12]. Fig-
ure 6 gives the first 40 eigenvalues at 1 kHz.

The singular values follow the stair-step distribu-
tions and then fall into the computational noise after
flat plateaus. The stair-step distributions are due to
two kinds of modes (–n and n) with the same magni-
tudes except for the zeroth-order mode. The magni-
tude of an eigenvalue represents the contribution of
the mode corresponding to the structural vibration. In
addition, the eigenvalues in air are greater and the f lat
plateaus are longer than in water, which means that the
eigenvalues are more effective.

The random incident noise field is made of plane
waves propagating in random directions. To illustrate
the physical significance, Fig. 7 shows the modal
decomposition of the surface velocity on the structure
excited by a plane wave, which corresponds to the sin-
gular values in Fig. 6. On the one hand, two types of
resonance frequencies are found for the modes in air
(see Figs. 7a, 7c). The first type only has peaks and the
second type has higher frequencies and includes peaks
and valleys. In addition, the resonance frequencies of
lower order modes are less than those of higher-order
modes. Compared with the case for air, the magnitude
of the structural normal velocity in water decreases as
a whole. The first type of resonance frequencies also
decreases and even disappears, whereas the second
type remains almost unchanged (e.g., at 1740 Hz in
Fig. 7a and at 980 Hz in Fig. 7c). Note that the max-

*vv *pv
*pv

  sN



18 FULIN ZHOU et al.

Fig. 3. Magnitude of structural displacement and deformation at resonance frequencies.
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drical shell.
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ima of the second type are greatly reduced and even dis-

appear (e.g., at 2460 Hz in Fig. 7a and at 1280 Hz in Fig.

3c). The f luid loading strongly affects the velocity at

low frequencies. On the other hand, the magnitude of

normal velocity of the coated cylindrical shell is less

than that of the cylindrical shell. In addition, note that

the singular values of the matrices  and  are

the same, although this is not presented herein.

Because of the loss of coating, the Bessel function with

*pv *vv
imaginary argument becomes incorrect at high fre-
quencies (e.g., ka > 80).

For the sake of the image resolution in Fig. 7, not
all efficient modes are given. To determine the cutoff

value for the SVD, Fig. 8 shows the Fourier coeffi-
cients of the decomposition versus modal order. The

series can be truncated at a modal order , which

means that the mode orders  make the main
contributions, whereas others modes are neglected.

 sN

=  tn N
−  ~ t tN N
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Fig. 5. Structural displacement and deformation of coated
cylindrical shell at 1087 Hz.
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Thus, we can choose a dominant mode-based deter-

mination of  in Eq. (12). For the case of

air at 1 kHz, it is reasonable to set = 15, whereas

= 5 is chosen for water. There are more orders in air
than in water, which illustrates that the singular values
in air decrease more slowly. In addition, the magni-
tudes of the Fourier coefficients for the coated cylin-
drical shell are generally smaller than those of the
cylindrical shell.

SCATTERED FIELD

According to the impedance theory of sound scat-
tering, the structural, acoustic, and internal admit-
tance are defined by

(13a)

(13b)

= +  2 1s tN N
 tN

 tN

= − ,i i iv Y p

= ,s a sv Y p
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(13c)

where denote the incident and scattered pres-

sure column on the surface, respectively, and

denote the corresponding velocity column. The

admittance matrices  depend only on the

geometry of the exterior surface and on the properties of
exterior fluid, which can be calculated by using the
Green’s function in free space [10, 13]. With these equa-
tions, we can write the surface scattered pressure as

(14)

In the previous section, we obtained the structural
admittance of a coated cylindrical shell for three exter-
nal forces: a normal point force, a plane wave, and a
random noise field. Next, the scattered pressure on
the structural surface in water is calculated by using
Eq. (14) (see results in Fig. 9). Direct analytical solu-
tions of Eq. (2) and numerical solutions obtained by
FEM are also calculated for comparison, and both the
real and imaginary parts of the scattered pressure are
consistent with these results.

ALGEBRAIC MODEL AND APPROXIMATION 
OF STRUCTURAL ADMITTANCE

Due to the inverse relation, the characteristics of
the structural-admittance matrix are similar to those
of the usual admittance matrix. Both are symmetric
matrices. For a coated structure, the mutual admit-

tance  decreases with increasing surface distance .

 approaches the self-admittance when  tends to

zero. According to Faverjon’s model [19, 20], the alge-
braic model of structural admittance can be written as

(15)

where  is the arc distance between the point i and j on

the structural surface, and  denotes the local acoustic

admittance given by Eq. (16). The quantities 

and  are the real and imaginary parts of

acoustic density functions, respectively:
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Fig. 7. Modal decompositions of surface velocity on structure excited by a plane wave for n = 0…5 computed from the analytic
solution in Eq. (9). (a) Cylindrical shell in air; (b) cylindrical shell in water; (c) coated cylindrical shell in air; (d) coated cylindrical
shell in water.
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Fig. 8. Mode coefficient of normal velocity on the struc-
tural surface.
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describe the distribution of elements in the structural-
admittance matrix.

By using the software “Origin”, the above parame-
ters can be determined by fitting to a coated cylindrical
shell. The table gives results at 2, 3, 5, and 7 kHz. The
parameters λR and λI show a decreasing trend, which

is consistent with the variation of mutual admittance.
The fitted curves are compared with the density func-
tions of mutual admittance at 5 kHz. They are basi-
cally consistent near the self-admittance, which makes
a major contribution to the scattered field. The contri-
bution of the mutual admittance to the scattered field
decreases with increasing distance.

For the coated complex structure, the structural-
admittance matrix is typically large and requires an
intensive calculation. Thus, it is helpful to simplify the
matrix. After the mutual admittance is truncated at the

distance , a new structural-admittance matrix is

constructed and the scattered pressure is recalculated
by using Eq. (14). Taking 5 and 7 kHz as examples, the
absolute errors between the approximated and exact
scattered pressure are evaluated (see Fig. 11). The

results are divided into four sections by 0 <  < 0.125 m,

ijr

ijr
0.125 <  < 0.25 m, and 0.25 <  < 0.5 m in Fig. 11.

For the first interval of 0−0.125 m, the error fluctuates

greatly in the range between 0 and 1, and so the mutual

admittance strongly affects the scattered field. When

ijr ijr
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Fig. 9. Scattered field on the structural surface at (a) 2 and (b) 7 kHz.
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Fig. 10. (a) Real part  and (b) imaginary part  of the density function of structural admittance at 5 kHz.
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the distance is 0.125–0.25 m, the error is 0–0.4. Sub-
sequently, the error decreases exponentially. When the
distance exceeds 0.5 m, the error is less than 0.1 and
ACOUSTICAL PHYSICS  Vol. 65  No. 1  2019

Table 1. Results for fitted parameters

Frequency, Hz

2000 0.4236 0.1650 0.0578 0.1536 0.7021

3000 0.0779 0.1298 0.0536 0.1176 0.7324

5000 0.1288 0.0655 0.0884 0.0628 1.0603

7000 0.0568 0.0454 0.0413 0.0423 0.8377

RL λR IL λI φI
approaches zero, which means that the effect of the
mutual admittance on the scattered field is almost
negligible. For the frequencies of 5 and 7 kHz, the
admittance can be regarded as “local” admittance in
the range of 0–0.5 m, which behaves as a diagonal
sparse matrix.

CONCLUSIONS

The in vacuo structural admittance of an infinite,
coated cylindrical shell is investigated theoretically
and numerically. The analytical expressions of the
structural admittance are derived for the cases of vari-
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Fig. 11. Absolute error in scattered pressure at structural
surface at 5 and 7 kHz.
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ous external forces: a plane acoustic wave, a normal

point force and a random noise field. The first two

cases are used for theoretical analysis and the last case

is simulated by FEM. The structural admittance is

evaluated numerically. The results show that the struc-

tural admittance depends only on the object’s struc-

tural parameters and is independent of the external

medium and of f luid loading. According to the imped-

ance theory of sound scattering, the scattered field of

a coated cylindrical shell is calculated by combining

the structural-, acoustic-, and internal-admittance

matrices. The measuring method based on a simulated

random noise field provides guidance for developing a

measurement procedure to predict the scattered field

of complex coated objects in any medium. Because of

the non-local property of structural surface admit-

tance, we study a local approximation of the structural

admittance and build an algebraic model of the coated

object by nonlinear curve fitting. Finally, the large

matrices should be simplified to facilitate research on

the structural vibration.

ACKNOWLEDGMENTS

The study was supported by the National Basic

Research Program of China (973 Program), project

no. 613247.
REFERENCES

1. Yu. I. Bobrovnitskii, Acoust. Phys. 52, 513 (2006).

2. Yu. I. Bobrovnitskii, J. Sound Vib. 297, 743 (2006).

3. C. Langrenne, M. Melon, and A. Garcia, J. Acoust.
Soc. Am. 121, 2750 (2007).

4. E. G. Williams, Fourier Acoustics: Sound Radiation and
Nearfield Acoustical Holography (Academic Press,
1999).

5. M. Zampolli, F. B. Jensen, and A. Tesei, J. Acoust. Soc.
Am. 125, 89 (2009).

6. Yu. I. Bobrovnitskii, Acoust. Phys. 52, 638 (2006).

7. Yu. I. Bobrovnitskii, Acoust. Phys. 53, 535 (2007).

8. Yu. I. Bobrovnitskii, K. D. Morozov, and T. M. Tomi-
lina, Acoust. Phys. 56, 127 (2010).

9. C. F. Gaumond and T. Yoder, J. Acoust. Soc. Am. 97,
1415 (1995).

10. S. T. Rakotonarivo, W. A. Kuperman, and E. G. Wil-
liams, J. Acoust. Soc. Am. 134, 4401 (2013).

11. S. Rakotonarivo, S. Yildiz, P. Roux, E. G. Williams,
and W. A. Kuperman, in Proc. 2nd Int. Conference on
Underwater Acoustics (Island of Rhodes, 2014).

12. E. G. Williams, J. D. Tippmann, S. T. Rakotonarivo,
Z. J. Waters, P. Roux, and W. A. Kuperman, J. Acoust.
Soc. Am. 142, 103 (2007).

13. J. D. Tippmann, S. T. Rakotonarivo, W. Kuperman,
Z. J. Waters, P. Roux, and E. G. Williams, in Proc. 22nd
Int. Congress on Acoustics, ICA 2016 (Buenos Aires,
September 5−9, 2016).

14. E. Brandão, A. Lenzi, and S. Paul, Acta Acust. Acust.
101, 443 (2015).

15. J. Y. Chung and D. A. Blaser, J. Acoust. Soc. Am. 68,
907 (1980).

16. J. Y. Chung and D. A. Blaser, J. Acoust. Soc. Am. 68,
914 (1980).

17. E. J. Skudrzyk, J. Acoust. Soc. Am. 74, S109 (1983).

18. E. Brandão, P. Mareze, A. Lenzi, and A. R. da Silva,
J. Acoust. Soc. Am. 133, 2722 (2013).

19. B. Faverjon and C. Soize, J. Sound Vib. 276, 571
(2004).

20. B. Faverjon and C. Soize, J. Sound Vib. 276, 593
(2004).

21. M. Yang, T. Wang, Z. Fan, and Z. Jin, in Proc. 16th
AIAA/CEAS Aeroacoustics Conference (Stockholm,
2010), p. 3907.

22. M. C. Junger and D. Feit, Sound, Structures, and their
Interaction (MIT Press, Cambridge, 1986).

23. R. D. Doolittle and H. Überall, J. Acoust. Soc. Am. 39,
272 (1996).

24. W. A. Kuperman and F. Ingenito, J. Acoust. Soc. Am.
67, 1988 (1980).

25. W. Tang, S. He, and J. Fan, Acta Acust. (Beijing) 30,
289 (2005).
ACOUSTICAL PHYSICS  Vol. 65  No. 1  2019


	INTRODUCTION
	ANALYTICAL EXPRESSION OF STRUCTRUAL ADMITTANCE
	NUMERICAL EVALUATIONS OF STRUCTURAL ADMITTANCE
	SCATTERED FIELD
	ALGEBRAIC MODEL AND APPROXIMATION OF STRUCTURAL ADMITTANCE
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

		2019-04-25T16:19:17+0300
	Preflight Ticket Signature




