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Abstract—The improved generalized sidelobe canceller (GSC) based on eigenvalue decomposition beam-
forming technique for ultrasound imaging is proposed. Firstly, the signal subspace is obtained by performing
eigenvalue decomposition on the covariance matrix of received data. Secondly, the weighting vector of GSC
is divided into adaptive and non-adaptive two parts. Then the non-adaptive part is projected into the signal
subspace to obtain a new steer vector. Subsequently, based on the orthogonal complementary space of the
new steer vector, the blocking matrix is constructed. Finally, the weighting vector is updated by projecting the
final weighting vector into the signal subspace. In order to verify the proposed algorithm, the simulations of
the point targets and the cyst phantom were conducted in Field II. The experimental results indicate that the
proposed method has better resolution and contrast ratio than the conventional algorithms. In addition, the
algorithm is robust to noises. Furthermore, combining with coherence factor, the contrast ratio of the pro-
posed algorithm can be further improved in comparison with a conventional GSC with coherence factor.
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1. INTRODUCTION
Ultrasound is widely used in medical and industrial

inspection field due to its safety and low cost. The
transducer array transmits a focused beam to the target
and receives the pulse-echo dynamically to form a B-
mode image. The conventional delay-and-sum (DAS)
beamforming is the most widely used and the simplest
method in ultrasound imaging, but it has many draw-
backs, such as low resolution, serious artifacts and
grating sidelobes. The adaptive beamforming tech-
niques can overcome some of these defects. J.F. Syn-
nevag [1] adopted the minimum variance (MV) adap-
tive beamforming method, which was first proposed
by Capon in 1969, in medical ultrasound imaging field
and achieved a better image quality than DAS.
Although the MV method can achieve a better resolu-
tion, its robustness is not better than the conventional
DAS [2]. J. Li [3] used the diagonal loading method to
improve the beamformer’s robustness and provided a
guidance to define the amount of diagonal loading.
K.W. Hollman first put forward the conception of
coherence factor (CF) which can effectively compress
the sidelobes to improve the contrast ratio of imaging
[4], and this method is adopted in many adaptive algo-
rithms to correct the phase distortion resulted from the
focusing error [5–7]. Besides, Li et al. proposed a gen-
eralized coherence factor (GCF) as an adaptive

weighting coefficient for imaging algorithms, which is
widely used in practice [8, 9]. Many scholars seek
other ways to improve the lateral resolution and SNR
except the MV-based methods. In [10], the author
improved the image quality via using the phase infor-
mation, phase coherence factor (PCF) and sign
coherence factor (SCF). Apart from the conventional
DAS imaging algorithm, almost all of improved meth-
ods will increase the computational complexity. Asl
and Mahloojifar suggested that the computational
complexity of matrix inversion can be reduced by con-
structing the covariance matrix into a Toeplitz matrix
[11]. Some scholars also proposed the QR decomposi-
tion method to realize the fast inversion calculation of
the covariance matrix [12]. Other MV-based compu-
tation reduction methods can be found in [13, 14]. The
generalized sidelobe canceller (GSC) algorithm, as
the equivalent structure of MV, is divided into the
upper and lower channels. The upper channel is a
non-adaptive channel and the lower channel is the
adaptive part; the desired signal can be blocked by the
blocking matrix [15–17]. At last, the undesired signal
is eliminated and the quality of ultrasound imaging is
improved through overlaying.

This paper proposes an improved generalized side-
lobe canceller beamforming (IGSC) differing from
[18]. The proposed method concerns more about the
improvement of resolution and contrast ratio (CR).
Based on IGSC, the IGSC-CF algorithm is also pro-1 The article is published in the original.
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Fig. 1. Generalized sidelobe canceller.
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posed in order to further compress sidelobes and
improve the contrast ratio of imaging. The main fea-
ture of the proposed method is to modify the blocking
matrix, instead of defining it fixed beforehand. Then
the non-adaptive weighting vector is projected into the
signal space to acquire a new steer vector, and the
improved blocking matrix is constructed based on its
orthogonal complementary space adaptively. At last,
the final weighting vector is projected into the signal
space to get a new vector to further improve the perfor-
mance of the algorithm. The proposed algorithm in
this paper can be applied to synthetic, plane wave and
other acquisition sequences.

This paper is organized as follows: the IGSC
method is presented in section 2 in detail. The proce-
dures of acquiring the covariance matrix are described
in section 3. Experimental results and the discussion
of the resolution, CR and robustness are presented in
section 4, which includes the comparison between the
proposed IGSC, IGSC-CF, and DAS, MV, GSC,
GSC-CF as well. All experiments use the linear array
for the transmission and reception of ultrasound sig-
nals. Conclusion is drawn in section 5.

2. METHOD

2.1. Generalized Sidelobe Canceller

The MV is the most commonly-adopted adaptive
beamforming technique. Supposing a linear array
which consists of  equal space elements, its beam-
forming output can be written as

(1)

where  is the k-th signal sample received by i-th
element after a certain time delay,  is the weighting
vector for each element and

The main task is to obtain the . A criterion is pro-
vided in MV, which the weights are acquired by mini-
mizing the output power of the beamformer subjecting
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to a constraint condition, it can be expressed as fol-
lows:

(2)

where  is the abbreviation of “subject to”, meaning
constrained,  is the output power,

 is the covariance matrix of the
received data,  is the steering vector of the desired sig-
nal. The solution to the optimization problem (2) can
be obtained by using Lagrangian method, and the
solution is:

(3)

The GSC is the equivalent structure of the MV
algorithm. Unlike MV, the GSC algorithm transforms
its constraint optimization problem into uncon-
strained optimization problem through the upper and
lower branches, and its structure is illustrated in Fig. 1.

In GSC, the weighting vector is divided into non-
adaptive and adaptive parts, the first one lies in the
constraint subspace and the latter belongs to the sub-
space, which is orthogonal to the former. The weight-
ing vector can be expressed as

(4)

where  is a  fixed vector and B is a 
blocking matrix, which blocks the desired signal into
the lower path. Since the  is fixed, the previous con-
straint problem (2) turns into an unconstrained opti-
mization problem to solve the adaptive vector . The
optimal solution is [19]:

(5)

Here denoting  is the out-
put after the received data  passes through the
upper branch and the blocking matrix  respectively.
The adaptive weighting vector can be expressed as:

(6)

where ,  is the covari-
ance matrix of  and  is the correlation vector of 
and . In fact, the optimal solution (5) is the Wiener
solution that minimizes the mean square error
between the upper and lower paths.

2.2 Eigenvalue Decomposition
According to the echo signals, the covariance

matrix can be obtained:
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where  represents the expected value,
,  is the number of

array elements,  represents the k-th sampling point
and  is the echo data of the k-th sampling point
received by all array elements.

In practical applications, the covariance matrix is
usually unknown. Therefore, spatial smoothing is gen-
erally used to estimate the covariance matrix with
autocorrelation sampling matrix, to effectively reduce
the matrix dimension and eliminate the correlation
between echo signals:

(8)

In equation (8),  is the number of array elements, 
is the number of array elements in the sub-array, all
array elements can be divided into  sub-
arrays altogether. The average of the echo data of each
sub-array can be used to estimate the covariance
matrix.

After obtaining the signal covariance matrix , the
space  is obtained by using eigenvalue decomposi-
tion, which includes both the desired signal and the
noise signal space. Then, rearranging its eigenvalues 
in descending order, if the ratio of adjacent eigenvalue

 exceeds a preset threshold value, a new space
is constituted:

(9)

where  is the corresponding eigenvector and Us is the
signal space.

In order to increase the robustness of the algo-
rithm, the diagonal loading technique is used to pro-

cess the matrix,  is used instead of the origi-

nal autocorrelation matrix , where  is the unit
matrix and the diagonal loading coefficient is

, δ is a constant satisfying . In

this paper .

2.3. Improved Generalized Sidelobe Canceller

The GSC can work properly whether z contains a
little desired signal or not. Once the desired signal
exceeds its limitation, which means the desired signals
leak much to the lower path, thus the imaging quality
will degrade a lot. Here the IGSC is introduced by
modifying the blocking matrix B and the final weight-
ing vector is projected into the signal space to improve
the GSC ability to block the undesired signal. As
described in (4), the blocking matrix B is orthogonal
to the non-adaptive weighting vector . In the pro-
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posed IGSC, the new adaptive vector  is obtained
by projecting the non-adaptive vector  into the sig-
nal space , and the improved blocking matrix  is
orthogonal to the adaptive vector . The specific
description is shown in (10), through these operations,
the blocking matrix changes from a non-adaptive
matrix into an adaptive matrix, which improves the
ability to block the desired signal.

The new steer vector is acquired by projecting the
non-adaptive weighting vector into the signal space:

(10)

The renewed blocking matrix Bp is then established on
the basis of the orthogonal complementary space of
wp. Thus the weighting vector can be expressed as

(11)

where 

In general,  is a  fixed vector and the block-
ing matrix  is orthogonal to vector , so  is usually
a fixed matrix. In this paper, we project  into the sig-
nal space and then construct the blocking matrix 
adaptively.

Here the blocking matrix is established in a novel
way, and then the final weighting vector is obtained
that can be projected into the signal space to further
improve the resolution and contrast ratio. So, the final
weighting vector can be expressed as:

(12)

After obtaining the covariance matrix and the
result from (12), the IGSC beamforming output can
be determined as:

(13)

By emphasizing the in-phase signals and reducing
the out-of-phase ones, CF can be weighted to improve
the contrast ratio, enhance the ability of sidelobe sup-
pression. The definition of CF is the ratio of coherent
energy to total energy, the expression is as follows:

(14)

In order to make an overall comparison with [18],
the proposed method integrates with CF too, the out-
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Table 1. Initial values for the experiment

Parameter Value

Central frequency f0 3.5 MHz
Sampling frequency fs 50 MHz
Array type Linearly
Transducer number N 64
Subarray length L 32
Bandwidth B 0.6 mm
Element width 0.2 mm
Element height 5 mm
Element spacing 0.48 mm
Focal depth (points) 60 mm
Focal depth (cyst) 25 mm
4. EXPERIMENTAL RESULTS

This section tested the performance of DAS and
other adaptive algorithms, as well as the proposed
methods IGSC and IGSC-CF based on Field II [20,
21]. We conducted the experiment with two kinds of
detection objects, the first one consists of 18 point tar-
gets uniformly distributed between 30 to 70 mm in two
columns, and the second is a circular cyst in a speckle
medium. The basic parameters setting for these exper-
iments are displayed in Table 1. It should be noted that
all the methods have used the spatial smoothing and
Fig. 2. 18-point targets images o
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diagonal loading technique. Besides, a Gaussian white
noise with a certain signal-to-noise ratio has been
added to each simulation experiment [22]. The simu-
lation of this paper adopts the linear array transducer
to transmit ultrasound signals and the dynamic range
of all images is 80 dB.

4.1. Point Targets Experiment

The point targets are distanced 4 mm in the lateral
and 5 mm in the axial directions, images through dif-
ferent methods are displayed in Fig. 2. It can be seen
that the IGSC-CF has the best performance and all
adaptive methods have better performance than DAS.
GSC performs nearly the same as MV. After combin-
ing with CF, some artifacts in images are removed.
The proposed IGSC achieves similar results in the fur-
ther scanning depth, while it performs slightly worse
than the GSC-CF within the 45 mm, but better than
the GSC. This is because CF weighting can improve
the contrast ratio and resolution by emphasizing the
in-phase signals and reducing the out-of-phase ones.

After combining the IGSC with CF, both the near
area and the farther depth can acquire better resolu-
tion than other methods. This improvement can be
further verified by Figs. 3a and 3b depicting the lateral
variation at depth of 40 and 60 mm respectively.

It can be seen from Fig. 3a that DAS image has the
greatest sidelobe level, GSC and MV improve slightly,
however the imaging effect has a significant improve-
ACOUSTICAL PHYSICS  Vol. 65  No. 1  2019

btained using different methods.
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Fig. 3. (a) Lateral variation at depth of 40 mm, (b) lateral variation at depth of 60 mm.
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Table 2. Numerical results of mainlobe width for different
methods in 40 mm

Method
Mainlobe width First sidelobe peak, 

dB–6 dB –20 dB

DAS 2.18 3.85 –3.02
MV 0.56 2.06 –18.54
GSC 0.56 2.06 –18.54
GSC-CF 0.50 1.09 –57.18
IGSC 0.61 1.69 –28.60
IGSC-CF 0.52 1.14 –84.07

Table 3. Numerical results of mainlobe width for different
methods in 60 mm

Method
Mainlobe width First sidelobe peak, 

dB–6 dB –20 dB

DAS 1.28 7.18 –10.75
MV 0.58 1.49 –38.40
GSC 0.58 1.49 –38.40
GSC-CF 0.52 1.28 –55.90
IGSC 0.53 1.55 –55.91
IGSC-CF 0.51 1.31 –81.67
ment with the help of CF, IGSC has a little improve-
ment on the basis of GSC and has significant
improvement after combining with CF. Besides,
IGSC-CF performs better than GSC-CF. Here we use
−6 and –20 dB mainlobe width as indications of reso-
lution and use the first sidelobe peak to represent the
contrast ratio. As it can be seen from Table 2, the
IGSC performs slightly better than GSC at –20 dB
mainlobe width, while it behaves 0.37 mm over GSC.
IGSC-CF has similar results at –6 and –20 dB main-
lobe width comparing with GSC-CF, but it is more
advantageous at lower dB values than GSC-CF. The
last column shows the contrast ratio of the different
methods, and lower quantities represent better image
quality. The proposed IGSC performs better than MV
and GSC, but worse than GSC-CF, the reason is that
CF has great ability in suppressing the sidelobes. So,
the image quality of IGSC-CF is far superior to other
methods.

Similar patterns are shown in the case of the farther
scanning depth (Fig. 3b), while the advantages of the
proposed methods appear. Similarly, the DAS per-
forms the worst and the IGSC has similar mainlobe
width with MV and GSC, but when these methods are
combined with CF, the first sidelobe peak can be
greatly reduced. On the other hand, the first sidelobe
peak of IGSC is around 20 dB better than that of GSC
and MV, which indicates that the proposed method
has better ability to compress sidelobes. When com-
bined with CF, the contrast ratio has significant
improvement on the basis of IGSC; moreover, the
clutter signals have larger distance to the mainlobe in
GSC-CF and IGSC-CF. More experimental results
are shown in Table 3.

In order to test the robustness against noises of the
proposed methods, a 10 dB white Gaussian noise is
added to the received data. Figure 4 displays the
ACOUSTICAL PHYSICS  Vol. 65  No. 1  2019
images obtained by the abovementioned methods, and
Fig. 5 shows the corresponding resolution at depth of
40 and 60 mm respectively. After adding the noises,
the background white spots are obviously enhanced. It
can be seen that GSC-CF degrades its robustness
against noises than DAS, MV and GSC. IGSC has
better robustness than other adaptive methods, since
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Fig. 4. 18-point targets noise images obtained using different methods.
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Fig. 5. (a) Lateral variation at depth of 40 mm with noise, (b) lateral variation at depth of 60 mm with noise.
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we add relatively strong noises to the echo signals, all
methods’ performance are degenerated to some
degree.

Figure 5a,b display the corresponding resolution at
depth of 40 and 60 mm respectively. Both for the 40
and 60 mm, IGSC achieves better first sidelobe peak
value than DAS, MV and GSC which shows inferior-
ity to GSC-CF and IGSC-CF in the 40 mm. How-
ever, it shows a little dominance over GSC-CF and
IGSC-CF in the 60 mm, which illustrates that the
IGSC has better robustness than other adaptive algo-
rithms. IGSC has some improvement in mainlobe
width after integrating with CF in both 40 and 60 mm.
Besides, IGSC displays nearly the same –6 dB main-
lobe width and the lower first sidelobe peak value than
GSC-CF and IGSC-CF in the farther scanning depth
situation. Meanwhile, the IGSC has a lower first sid-
elobe peak value than DAS, MV and GSC both in the
near area and the farther scanning depth, which shows
ACOUSTICAL PHYSICS  Vol. 65  No. 1  2019
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Table 4. Numerical results of mainlobe width for different
methods in 40 mm with noise

Method
Mainlobe width First sidelobe peak, 

dB–6 dB –20 dB

DAS 2.36 8.76 –2.19
MV 0.56 1.60 –17.52
GSC 0.54 1.67 –16.54
GSC-CF 0.51 1.06 –27.74
IGSC 0.59 1.73 –25.98
IGSC-CF 0.53 1.09 –28.40

Fig. 6. Cyst phantom images obtained using different methods.
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Table 5. Numerical results of mainlobe width for different
methods in 60 mm with noise

Method
Mainlobe width First sidelobe peak, 

dB–6 dB –20 dB

DAS 1.19 6.83 –11.46
MV 0.57 1.58 –25.77
GSC 0.56 1.49 –23.10
GSC-CF 0.49 1.25 –26.04
IGSC 0.50 1.52 –28.30
IGSC-CF 0.48 1.26 –26.04
its robustness against noises. The detailed numerical
results are listed in Tables 4 and 5.

4.2. Cyst Phantom Experiment

The cyst phantom is set 5 mm radius located at the
depth of 25 mm in a speckle medium. The scatter
amplitudes are Gaussian distributed. The spatial
smoothing and the diagonal loading technique are
adopted as well. The specific experiment parameters
are listed in Table 1. Images after processing by differ-
ent methods are shown in Fig. 6. In the same way, a 10
dB noise is added to the received echo signals, and the
image results are shown in Fig. 7.

For the purpose of stating the superiority of the
proposed methods, we calculated the contrast ratio
and contrast-to-noise ratio (CNR). CR is the differ-
ence between the value in background and value in cir-
cle cyst region, CNR is calculated by CR divided by
the standard deviation of image intensity in back-
ground region. The standard deviation is the index of
robustness of the algorithm [23, 24]. Table 6 illustrates
the CR and CNR without noises, and Table 7
describes the indexes under noise occasions.

As can be seen from Table 6, the MV and GSC per-
form almost the same without noise, and the proposed
IGSC performs better than MV, GSC and GSC-CF.
With the help of CF, both GSC and IGSC have signif-
icant improvement in CR. From the view of robust-
ness, the DAS performs the best and the proposed
IGSC-CF sacrifices the robustness to some extent.
For CR, IGSC-CF do the best, which means the pro-
posed IGSC-CF performs better than GSC-CF over-
all, and the IGSC also performs better than GSC and
MV overall. From Table 7 we can see that the CR and
CNR of all algorithms have reduced significantly
under the circumstance of relatively strong noises,
which shows that noise has a greater impact on the
imaging results of adaptive algorithms. Besides, both
the mean value in cyst region and the mean value in
background region have a certain degree of increasing
due to noises. The proposed IGSC has higher CR than
other methods except DAS, which means that it has a
ACOUSTICAL PHYSICS  Vol. 65  No. 1  2019
stronger ability to suppress noises than the other
methods and has the best robustness compared with
other adaptive algorithms. GSC-CF shows the lowest
CR, this is because CF raises the standard deviation of
the background region and the robustness of the algo-
rithm is reduced. At last, the DAS behaves the best in
CR, which shows that it has the best robustness mainly
due to the simplest operation of this method. In con-
trast, the adaptive algorithms are more susceptible to
noises due to the more complex matrix operations
than the DAS, so the robustness of the algorithm is
also reduced. For standard deviation, the proposed
IGSC is more robust than other adaptive algorithms
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Fig. 7. Cyst phantom noise images obtained using different methods.
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Table 6. CR and CNR of the cyst phantom through different methods

Method Mean value 
in cyst region, dB

Mean value 
in background region, dB Standard deviation CR CNR

DAS –37.16 –17.68 6.81 19.48 2.86
MV –47.21 –26.79 12.84 20.42 1.59
GSC –47.21 –26.79 12.84 20.42 1.59
GSC-CF –57.24 –35.35 16.42 21.89 1.33
IGSC –46.21 –16.90 13.24 29.31 2.21
IGSC-CF –55.89 –25.94 17.16 29.95 1.75

Table 7. CR and CNR of the cyst phantom through different methods with noise

Method Mean value in cyst region, 
dB

Mean value in background 
region, dB Standard deviation CR CNR

DAS –24.35 –14.09 6.39 10.26 1.61
MV –32.58 –24.46 8.05 8.12 1.01
GSC –32.35 –24.28 8.06 8.07 1.00
GSC-CF –36.49 –30.31 8.68 6.18 0.71
IGSC –25.41 –15.29 6.84 10.12 1.48
IGSC-CF –29.74 –21.82 8.49 7.92 0.93
and the proposed IGSC-CF is more stable than the
GSC-CF.

5. CONCLUSIONS

This paper proposes an improved generalized side-
lobe canceller (IGSC) in ultrasound imaging system,
which constructs the blocking matrix in a novel way
and projects the final weighting vector into signal
space. This method gets an adaptive blocking matrix
that increases the ability of the adaptive part to block
the desired signal. The experimental results of the
point targets image and the cyst phantom image show
that the main feature of the proposed method can
enhance the mainlobe width, first sidelobe peak and
CR compared with DAS, MV and GSC. Seeing from
standard deviation of cyst phantom experiment, the
IGSC has stronger robustness compared with other
adaptive algorithms. When IGSC is integrated with
CF, not only the resolution, but also the CR are
improved as well. On the other hand, when exposed in
noises occasions, the proposed IGSC has better
robustness than MV, GSC, GSC-CF and IGSC-CF,
and DAS has the best robustness compared to adaptive
algorithms because of its minimal complexity.
Although the robustness of IGSC is degenerated to
some degree after combining with CF, it still performs
better than GSC-CF, which further validates the
effectiveness and practicability of the proposed
method.
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