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Abstract⎯The computation of a compressible f low for aeroacoustic prediction is a challengeable work insofar
as the f luctuation is usually very small in a sound field compared with the f low field. For the low Mach num-
ber considered in this study, a discrete vortex method in conjunction with fast multipole time-domain bound-
ary element method is developed and applied to predict far-field sound resulting from a 2D vortex dominated
flow. The f low field is simulated employing the classical discrete vortex method. The sound field scattered by
solid bodies is determined by using a time-domain boundary element method combined with the convolution
quadrature approach, by means of which the convolution integral is approximated by a quadrature formula
utilizing a Laplace-domain fundamental solution. In addition, the fast multipole method is applied to
improve the computational efficiency. Finally, several examples are presented to check the applicability and
accuracy of the method. Numerical results indicate that the noise predicted by the present method agrees well
with the experimental results, and the sound pressure levels of the cylinder models have a dipole-like direc-
tivity at vortex shedding frequency.

Keywords: Discrete vortex method, convolution quadrature method, fast multipole method, time-domain
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1. INTRODUCTION

Aeroacoustic sound is an important issue in several
technical applications, including wind turbine noise,
rotor craft [1] and fan noise [2]. This noise is generated
by f luctuations of the vortical f low or by directly con-
verting the vortical energy into sound in the near field,
which is associated with pressure f luctuations that
propagate to the far field.

The complicated unsteady vortical f low, which is
actually the source of an aeroacoustic sound, is related
to the compressibility of air and needs to be calculated
based on the compressible Navier–Stokes equations.
At present, these equations can be numerically solved
using the computational aeroacoustics method
(CAA), allowing an investigator to determine what the
noise generation mechanisms and sound propagation
processes are and to obtain a better understanding of
the physics of these problems [3, 4]. Note that aero-
acoustic problems typically involves wide bandwidth
and long propagation distances; furthermore, the
amplitude of sound pressure is usually very small com-
pared with the mean flow. That means the CAA
method needs to adopt high-order finite difference

schemes to reduce numerical noise and to minimize
numerical dispersion and dissipation [5, 6]. That will
lead to the computation time and memory increasing
drastically, and limit the CAA to be used in general [7].

An alternative method to the CAA (called splitting
method) is to split the problem into source mechanism
and sound propagation. The source region governed
by full nonlinear equations is computed using compu-
tational f luid dynamics techniques (CFD) [8, 9]. The
sound source terms are extracted using the near-field
results, according to the Ffowcs Williams and Hawk-
ings (FWH) equation [10, 11]. Then the far-field
sound can be calculated by solving an inhomogeneous
wave equation [12].

Although the splitting method can save computa-
tional time and memory storage compared with the
CAA, it involves some difficulties:

1. Very fine grids are usually required, since they
are directly related to the lowest resolvable scale and
thus to the highest frequency which is accurately rep-
resented.

2. Due to the large range of spatial and time scales
present in turbulent f lows, CFD techniques are very
time-consuming in obtaining high-frequency f low
field quantities for aeroacoustics predictions [13].1 The article is published in the original.
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3. With complicated geometries, it is not feasible to
analytically construct a Green’s function. Further,
restrictions need to be put on the size of the surface
(compact source) to extract acoustic signals [14].

In conclusion, the splitting method still remains
expensive for practical applications. A possible way to
avoid the issues is to obtain a simplified formulation by
introducing more assumptions that are satisfied in
most cases. Keep in mind that vorticity is the major
mechanism for noise generation [15], thus the choice
of the vortex method computation for such problems is
very reasonable.

The vortex method can reveal the influence of a
surface pressure gradient upon vorticity producing,
the nonlinear interactions between shed vortices and
the distortions of a vorticity field encountering solid
bodies. Clearly, it is not capable of capturing all the
important f low features, but is sufficient to provide the
information for a far-field sound prediction [16–18].

In the acoustic part, various approaches have been
proposed with their numerical simulations for acous-
tic wave propagation and scattering problems, such as
the boundary element method (BEM) [19, 20]. aero-
acoustic problems usual with moving sound sources or
vibrating surfaces are by definition time dependent,
thus it is better to solve them using a time-domain
BEM. However, the time-domain simulations are rel-
atively less studied due to the instability in time step-
ping procedure. Besides numerical instability, the
time-domain boundary element method (TDBEM)
needs a fundamental solution, which is not available
for those complex problems [21]. Addressing this
issue, the convolution quadrature method (CQM),
which was pioneered by Lubich [22, 23], has been
developed as a technique to approximate convolution
integrals. Then, a new time-stepping procedure can be
established without the knowledge of the time-
domain fundamental solutions. Additionally, the
resulting quadrature formula can improve the stability
behavior of a time-stepping procedure [24]. Although
the convolution quadrature boundary element
method (CQ-BEM) is a powerful tool for analyzing
wave propagation, it fails to solve large-scale acoustic
problems due to the high computational cost. To
improve computing efficiency, the fast multipole
time-domain boundary element method (CQ-
FMBEM), combined with the TDBEM, CQM and
the fast multipole method (FMM), has been devel-
oped for solving large-scale problems [21, 25].

However, no such CQ-FMBEM for aeroacoustic
noise computation has yet been proposed. In this
work, we develop a new numerical method, which is
integrated with the discrete vortex method (DVM),
CQ-BEM and FMM, for the aeroacoustic sound pre-
diction. The DVM coupled with vortex sound equa-
tion is applied to obtain the acoustic signals from a
flow field, while the TDBEM is used for sound waves
scattering analysis. The CQM makes it possible for the
TDBEM to calculate waves radiated from numerous
moving sound sources and scattered by multiple sur-
face elements. In addition, the FMM helps to over-
come the computational efficiency problem.

The article is organized in the following way. A
short review on the fundamental equations for f low-
induced noise is presented in Sect. 2. In Sect. 3, the
basic formulations for DVM, CQ-BEM and FMM are
introduced. A description of the CQ-FMBEM algo-
rithm is presented in Sect. 4. In order to validate the
formulations and verify the algorithm, three examples
are presented and the numerical results are discussed
in Sect. 5.

2. GOVERNING EQUATIONS

When a bluff body is placed in a uniform flow, tur-
bulence is typically generated in the boundary layer
and in the wake of the f low. Aerodynamic sound arises
primarily by vortices shedding and moving in the
wake. As a result, to compute f low-induced noise gen-
eration, the f low field can be split into an inner
domain and an outer domain. The outer domain is
essentially irrotational and can therefore be described
by means of a velocity potential, while the inner one is
typically vortical and should be modeled using com-
pressible Navier–Stokes equations in theory. If the
Mach number is considered to be low, the compress-
ibility effect remains small enough. The f low in the
inner domain can be approximately described by
incompressible Navier–Stokes equations:

(1)

(2)

To research the aerodynamic sound generation,
Lighthill proposed an aeroacoustic model by trans-
forming the Navier–Stokes and continuity equations
to form an exact, inhomogeneous wave equation [26]:

(3)

where Tij = ρvivj – σij + δij[(p – p0) – (ρ – ρ0)] is the
Lighthill stress tensor, the term ρvivj is the Reynolds
stress and σij is the viscous stress tensor.

In a low Mach number f low, the acoustic ampli-
tude is very small relative to the mean pressure p0, the
non-linear effect on sound propagation can therefore
be ignored. Furthermore, the value of Lighthill’s
quadrupole source can be approximated by means of
its principal component. Then, Eq. (3) is reduced to a
much simplified form [14]:
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Fig. 1. Wave scattering.
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where p is the sound pressure, c is the propagation
velocity, u is the velocity field, ω is the vorticity and ρ0
is the density of f luid.

A 2D fundamental solution of Eq. (4) in time
domain represents the wave propagation in a free
space due to an impulse at emission time τ in point y,
and is given by

(5)

where H[⋅] is the Heaviside function, r is the distance
between the source point y and the field point x.

Obviously, the presence of a boundary S will affect
the sound field. When the incident wave hits a solid
surface, scattered waves are generated, as shown in
Fig. 1.

The total waves, sum of the incident wave and scat-
tered waves, can be obtained from the following gen-
eral representation integral:

(6)

Here q = ∂p/∂n denotes the sound flux, Ω is the
computational domain and a represents the source term.
Once the values of both p and q are known on S, Eq. (6)
can be used to determine far-field sound pressure.

3. NUMERICAL METHOD

3.1. Discrete Vortex Method

In the inner domain, incompressible Navier–
Stokes equations are transformed into the vorticity
transport equation:

(7)

where ν is the kinematic viscosity.
In the DVM, dynamics of f luid motion is studied

using a split algorithm [27]:

(8)

and the vorticity field is presented by a set of Gaussian
smoothing vortex particles:

(9)
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Each particle, characterized by its position yi and
circulation Γi, is created on the body surface to satisfy
the no-slip condition [28]:

(10)

where M is the finite number of boundary element,
K is the matrix of coupling coefficients, γ(sn) is the
strength of surface element sn, βm is the profile slope of
surface element sm, u∞ and  are the components of
inflow velocity parallel to the x and y axes.

Then a first order Euler scheme is used to convect
the particles:

(11)

where uI is the sum of induced velocity, which can be
computed using the Biot–Savart law. In addition, Δy
is the random displacement used for the viscous diffu-
sion simulation [28].

Aiming at reducing the number of vortices, the par-
ticles are examined at each step pair by pair and will be
merged, provided they satisfy the following condition:

(12)

where ε0 is a prescribed small value [29].
Obviously, the DVM provides time histories of

strength and velocity for each vortex particle, which
can be used for sound source evaluation on the right-
hand side of Eq. (4).

3.2. CQ-BEM Formulation for 2D Scattering Problems
3.2.1. Boundary Integral Equation. To perform

time integration for the boundary equation obtained in
Sect. 2, the CQM is adopted in this work. Then,
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Eq. (6) for a 2D wave propagation problem can be
expressed by

(13)

where G and H = ∂G/∂n denote the time-domain fun-
damental solution and its double-layer kernel of the
2D wave propagation equation respectively [30]. In
addition, (*) is the symbol of time convolution,
defined as

(14)

3.2.2. Time Discretization. A fixed time step Δt is
adopted, equal to that used in f low field computation.
Then, the time axis is 0 = t0, t1, …, tm = mΔt = t. After

the boundary discretization is carried out, substituting
the quadrature formula (14) into the convolution inte-
grals gives a discrete version of Eq. (13) for boundary
node i,

(15)

Here N is the number of vortex particle, ωm – k is the

quadrature weight, which is obtained from a Laplace
transformed fundamental solution using the trapezoi-
dal rule with L equal steps (2π/L) [31]:

(16a)

(16b)

Here i is the imaginary unit, ρ is the radius of a cir-
cle in the domain of analyticity. The function γ is the
quotient of characteristic polynomials of the underly-
ing multi-step method, and is taken as [22, 23]
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In addition,  and  utilized in Eq. (16) are the
2D Laplace-domain fundamental solutions, which are
defined with Laplace parameter s as [32]

(18a)

(18b)

where K0 and K1 are the second kind modified Bessel
functions of zero and first order respectively, and ∂/∂n
is a partial derivative with respect to the outward nor-
mal direction on y.

Arranging Eq. (15) according to the boundary con-
ditions, a recursion formula can be established:

(19)

For a time step m, all the values before mΔt on the
right side of Eq. (19) are calculated and stored in pre-
vious steps, while the source term as(m∆t) is obtained

from DVM results at the actual time step. Then, it is
necessary to solve the equation for unknown boundary
data qj(m∆t) or pj(m∆t) at time step m.

Equation (19) can be written in a matrix form with
all the unknown boundary values in the vector λ,

(20)

where A is the coefficient matrix and b is the known
right-hand side vector. The computation of vector b
requires O((M + N)2) work and the matrix inversion
needs O(M2) operations once a time step in the con-
ventional CQ-BEM approach. Therefore, a compli-
cated problem with multiple boundary elements and
numerous vortex particles cannot be solved directly.
Besides the computation complexity, it is usually diffi-
cult to solve Eq. (20) due to the ill-conditioned coeffi-
cient matrix. Consequently, following Saitoh [33], the
CQ-BEM is accelerated by the FMM in this study.

3.3. Time-Domain Fast Multipole BEM
based on the CQM for 2D Wave Propagation

The FMM developed by Rokhlin and Greengard is
a technique for reducing computational time and
memory requirement in large-scale problem calcula-
tions [34]. Since the FMM and its applications to the
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Fig. 2. Multipole expansion and Graf’s addition theorem.
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BEM have been described in detail in other published

papers [35, 36], we will only summarize the essential

formulas derived for 2D wave propagation here.

Considering a field point x and a source point y
located in a polar coordinate system originating at the

point o closer to y, as shown in Fig. 2. The fundamen-

tal solutions  and  can be expanded using Graf′s

addition theorem [37]:
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field point x. Note that the multipole moments Mn and

 on o are not any longer associated with x, and are

given by

(21a)

(21b)

Similarly, |y – o| and ϕ are the radius and polar

angle of the source point y, I is the modified Bessel
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In addition, the source terms can also be calculated
using a local expansion:

(23)

In Eq. (23), |x1 – x| and α are the polar coordinate

components of source point x1 based on the local

expansion center x. And Lμ is the local expansion

coefficient, which can be obtained from multipole
moment by using a M2L translation,

(24)

where |x0 – x1| and β are the radius and polar angle of
the point x0 based on x1. The local expansion center
can be shifted from o' to x0 using the following L2L
formula:
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where Ln is the new local expansion coefficient. More-
over, |o' – x0| and γ are the polar coordinate compo-
nents of the original local center o' based on the new
expansion point x0.

4. ALGORITHM IMPLEMENTATION

A computer program to implement the method

presented in the previous section is written in FOR-

TRAN, which consists of two main components: f low

field computation and far-field noise prediction. The

( ) ( )

( ) ( )

( ) ( ) ( )

1 2
2

0

1
2

1 1

0

ˆ, ,

ˆ , ,

2
x .

m k j

L il Lm k
i m k l L

j
l
Lm k

i m k l Li

l

G t q k t

eG q k t e
L t

L I s e e
L

−
− π− +

− − π

=
− ∞− +

− − π− μα
μ μ

= ν=−∞

ω Δ Δ

⎛ ⎛ ⎞⎞ρ ρ= γ Δ⎜ ⎜ ⎟⎟Δ⎝ ⎝ ⎠⎠

ρ= −

∑

∑ ∑

x

x y

x x

( )

( ) ( ) ( ) ( )

1

0 0 11 ,
n i n

n n
n

L

M K s e

μ
∞

μ+ β
μ+

=−∞
= − −∑

x

x x x

( )

( ) ( ) ( ) ( )

0

01 ' ' ,

n

n i n
n

L

L I s e
∞

μ− − μ− γ
μ μ−

μ=−∞
= − −∑

x

o o x



736 XINZHONG GU, SHUNMING LI

Table 1. Comparison of the elapsed time

Cases CQ-BEM (HP) CQ-FMBEM (HP) CFD/FWH (DELL)

Circular cylinder 84.5 h 6.5 h 18.5 h

Square cylinder (case 1) 77.0 h 5.5 h 16.5 h

Square cylinder (case 2) 75.5 h 5.5 h 16.0 h
code begins by setting up the geometry, including cal-

culation of the chord, profile slope, normal vector of

each element and the coordinates of the vortex control

points. The DVM procedure, constructed by four suc-

cessive steps named vorticity generation, velocity

computation, vortex convection as well as merging and

elimination, is employed to simulate vortices produc-

ing on a solid surface, diffusing and convecting in the

wake. The CQ-BEM program is used to calculate the

radiated field from source points and the scattered

field from a solid surface. Acoustic pressure is evalu-

ated by the FMM on field points that are far away from

the source points, and computed directly on those

ones that are neighboring to the source points. An iter-

ative solver, preconditioned GMRES method, is used

to solve the system of equations for the unknown

boundary quantities. The computational stages are as

follows.
Fig. 3. Fast solution of 2D acoustic scattering problem
based on the FMM.
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Part I: flow field calculation.
Step 0. Initialization and data preparation. Initialize

all the time-dependent variables. Choose the calcula-

tion precision ε, the order of multipole expansion p
and the maximum number s of vortex particles allowed

in a childless box for the FMM. Set the parameters L
and R for the CQM.

Read in the nodes data of solid surface, then the

straight-line elements can be obtained by joining suc-

cessive data points. Length, profile slope, pivotal

point and normal direction of each element are calcu-

lated and stored.

Step 1. Vorticity generation and shedding. Compute

and invert the influence coefficients matrix. Loop on

the center of boundary elements where the induced

velocities are calculated and added together. The

strengths of the vortex are then obtained by multiply-

ing the inverted matrix by the column vector of local

velocity. Then shed vortex particles at half local veloc-

ities at prescribed points.

Step 2. Viscous diffusion. The process of viscous

diffusion, resulting in the vortices core growing and

weakening in strength, is simulated by shifting all the

discrete vortices with random displacements during

each time step [28].

Step 3. Vortex convection. Calculate induced veloc-

ity at the point of each particle due to intermediate and

free vortices. Then convect all the discrete vortices

using an Euler explicit scheme according to Eq. (11).

Step 4. Merging and elimination. The vortices will

be deleted if they penetrate the body. To keep the

number of vortices reasonable, two vortices in close

proximity are merged to satisfy the zeroth and first-

order vorticity moment conservation. The position

and circulation of the new vortex are given by

(26)

(27)

Part II: Far-field noise computation.

* ,
i i j j

i j

Γ + Γ
=

Γ + Γ
y y

y

* .i jΓ = Γ + Γ
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Fig. 4. Schematic diagram of f low over a circular cylinder.
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Fig. 5. Instantaneous f low pattern represented by vortex
particles.
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Step 5. Build up a tree structure .To run the FMM

algorithm, a hierarchical tree of boxes is constructed

by dividing the 2D computational domain (a box con-

taining all boundary elements and discrete vortices)

into smaller and smaller sub-domains, as shown in

Fig. 3.

Step 6. Upward pass. For each childless box b, cal-

culate multipole moment at its center from all vortex

particles in b using Eq. (21). Recursively move the

moment from b’s center to its parent’s center by using

M2M. Then, a p-th order multipole expansion is gen-

erated for each box at its center representing the con-

tributions from all contained vortex particles.

Step 7. Downward pass. Compute local expansion

coefficients for all boxes starting from level 2 to the

lowest level:

(1) For each box b, the M2L translation is used to

convert the multipole expansion of all boxes in its

interaction list to a local expansion on b’s center.

(2) Translate local coefficients of box b to b’s chil-

dren using the L2L translation.

The local expansions obtained in step 7 are added

together for each childless box, representing the con-

tributions due to all vortex particles in non-neighbor-

ing boxes.

Step 8. Evaluation of the integrals. Suppose a collo-

cation point y0 is on an element (intermediate vortex)

in childless box b.

(1) Calculate contributions from elements and par-

ticles contained in b and b’s adjacent boxes directly

according to Eq. (20).

(2) Compute contributions from boxes in b’s inter-

action list and from those far separated from b by shift-

ing the local expansion center to y0 using Eq. (23).

Step 9. Iterations of the solution. Initially, λ is cho-

sen to be a zero vector. Then calculate Aλ iteratively in

the upward and downward pass with constantly

updated λ vector until the residue of b reaches an

acceptable tolerance.

5. NUMERICAL EXAMPLES

Numerical analyses are performed to confirm the

ability of present method to accurately predict aero-

acoustic sound with scattering effect from circular and

square cylinders, since these problems have been

extensively studied using other methods [38–40].

For each case, the cylinder is supposed to be rigid,

that is q = ∂p/∂n = 0 on the surface. In the calculation

of influence function γ, it is adopted L = N = 128 and

R = 0.922, yielding an error of order O(10–5) [41].
ACOUSTICAL PHYSICS  Vol. 64  No. 6  2018
5.1. Aeroacoustic Sound from a Circular Cylinder

The schematic diagram of the f low model is pro-

vided in Fig. 4. A circular cylinder is fixed at the origin,

and the horizontal and vertical coordinates are speci-

fied as x and y. The boundary condition of zero tan-

gential velocity on the body surface ut = 0 is used to

determine the surface vorticity.

For comparing with other experimental and com-

putational works, the numerical simulation is con-

ducted at Reynolds number Re = 9 × 104 based on an

inflow velocity of U∞ = 34.6 m/s in the x direction and

a cylinder diameter of D = 0.038 m. The working f luid

is air with a density of ρ = 1.225 kg/m3 and a dynamic

viscosity of  = 1.7894 × 10–5 kg/m s. The boundary

surface S of the cylinder is discretized into 180 con-

stant elements. The vortices are advanced in time

using the first order Euler scheme with a time step of

0.001 s.

5.1.1. Flow computation. Figure 5 shows the instan-

taneous f low pattern represented by vortex particles at

time T = |U∞|t/D = 100. At a high Reynolds number,

the boundary layer is no longer stable showing an

alternate vortex shedding and the evolution of the

large-scale structures in the wake.

v
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Fig. 6. Time histories of CD and CL on the circular cylinder.
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Fig. 8. Far-field acoustic spectra for the circular cylinder. 
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Figure 6 shows the time-histories of lift coefficient

CL and drag coefficient CD. The computed average

value of CD is 1.317, which is larger than the experi-

mentally measured value of 1.20 [38] by about 9.75%.
The peak frequency of CL is 184 Hz corresponding to

a Strouhal number of St = fL/|U∞| = 0.202, which

largely agrees with the experimental result St = 0.191.

5.1.2. Noise prediction. Figure 7 shows the instan-

taneous values of acoustic pressure at the receiver 1

and receiver 2 located at (0, 64D) and (0, 128D)

respectively. Because both radiating and scattering

effects decrease with distance, the sound pressure at

receiver 1 is higher than that at receiver 2.

The aeroacoustic sound pressure level (SPL) in

decibels (dB) predicted at the receivers 1 is provided in

Fig. 8. It can be clearly seen that the far-field noise is

broadband in nature, and the vortex shedding compo-

nent is dominant in the spectrum. As shown in the fig-

ure, not only the peak frequency but also the ampli-

tudes of broadband noise coincide with the experi-

mental data. The peak SPL of 87.2 dB at receiver 1 is

predicted at around 184 Hz, which is higher than the

experimentally measured value of 84.7 by 2.5 dB [38].

The predicted overall sound pressure level (OASPL =

91.1 dB) at receiver 1 also agrees with the measured

one (OASPL = 87.8 dB).

The SPL directivity at vortex shedding frequency f0

is presented in Fig. 9. The maximum radiation direc-

tion is along the vertical direction when f = f0, indicat-

ing that acoustic waves are generated in response to

unsteady lift force acting on the cylinder surface and

therefore have a dipolar nature.

5.2. Aeroacoustic Sound from a Square Cylinder
In this study, the f low of air around a 2D square

cylinder is modeled, as shown in Fig. 10. The Reyn-

olds number of Re = 2.4 × 104 (case 1) and 1.0 × 105

(case 2) are adopted, with inflow velocity U∞ = 35

(case 1) and 49 m/s (case 2) along the positive x axis.
The square cylinder surfaces with side length B = 0.01 m
(case 1) and 0.03 m (case 2) are discretized into 164
constant elements. The corners of the cylinders are
“chamfered” in such a way that the two panels at a ver-
tex are replaced by smaller elements to avoid numeri-
cal problems.

Figure 11 shows the time development of f low
structure around the square cylinder at time T = 80,
represented by vortex particles. As in the previous sim-
ulation, the alternate vortices shed from the surface
and give rise to a turbulent wake.

Figure 12 shows the time histories of acoustic pres-
sure f luctuation at the observer points located at
(0, 0.515 m) for case 1 and at (0, –1.4 m) for case 2.

Figure 13 shows that a dominant single peak is
observed in the broadband noise spectra. From the
figure, we learn that the velocity of f low determines
how vortices shed from the surface and affects the
spectral content. Therefore, reducing f low velocity has
the effect of reducing peak frequency and magnitude
ACOUSTICAL PHYSICS  Vol. 64  No. 6  2018
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Fig. 9. Directivity pattern of SPL for the circular cylinder
at the radial distance of r = 128D when f = f0.
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Fig. 10. Schematic diagram of f low over a square cylinder.
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of a produced sound. The OASPL at the receivers are

91.7 (case 1) and 105.3 dB (case 2), which are consis-

tent with the experimental results (91.4 and 101.5 dB)
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Fig. 11. Instantaneous f low pattern represented by vortex particle
U∞ = 49 m/s, B = 0.03 m, Re = 1.0 × 105. 
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[39, 40], despite the fact that a double peak remains
visible in the noise measurements.

Presented in Fig. 14 are the polar plots of SPL for
the square cylinders. The directions of the maximum
noise level are vertical when f = f0, which confirms that

the sound fields are dominated by a lift dipole. More-
over, the qualitative features of sound generation and
propagation in the square cylinder cases are quite sim-
ilar to those in the circular cylinder case.

In summary, all the analyses indicate that utilizing
the numerical method for aeroacoustic noise predic-
tion is feasible.

5.3. Computation Efficiency Comparison

The simulations were carried out on a PC (HP
OPTIPLEX 380 with dual processors) and on a server
computer (DELL R720 with 8 processors). The table
shows the comparisons of elapsed time for the three
approaches: CQ-BEM, CQ-FMBEM and CFD/FWH.

It is seen that the multipole algorithm becomes
much faster than a traditional CQ-BEM, and the run
time for CQ-FMBEM is about one third of that for
CFD/FWH on the more powerful computer. More-
over, a much faster effect can be obtained by the CQ-
FMBEM if the algorithm is optimized or a parallel
computing code is applied.

6. CONCLUSIONS

A new method, combined with the DVM and CQ-
FMBEM, for aeroacoustic noise prediction was pro-
posed and applied to the calculations of far-field
sound induced by airf low past cylinders. The accuracy
and efficiency of the present method were confirmed
by comparing our solutions with the reference results.
The following conclusions were obtained.

(1) The DVM, used to compute a f low field at low
Mach number, enables an efficient study of noise
emission from the interaction between flow and bluff
body.
s. (a) Case 1: U∞ = 35 m/s, B = 0.01 m, Re = 2.4 × 104; (b) case 2:
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Fig. 12. Acoustic pressure at the receivers. 
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Fig. 13. Far-field acoustic spectra for the square cylinders. 
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Fig. 14. Directivity pattern of SPL for the square cylinder
when f = f0. 
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(2) The time-domain BEM, employed to analyze
the scattered sound wave from a solid surface, is capa-
ble of capturing broadband signals, thus especially
suits for f low induced noise computation.

(3) The convolution integrals are performed utiliz-
ing the CQM, in which the weights depend only on a
Laplace domain fundamental solution. In addition,
this numerical scheme has a positive influence on the
stability of the time stepping procedure.

(4) The boundary element equation is solved using
an iterative method, which typically involves an enor-
mous amount of matrix multiplications and requires
too much computational time. The FMM is able to
counter this low calculation efficiency problem of the
conventional TDBEM.
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