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Abstract⎯Sonic crystals are the periodic arrangements of scatterers embedded in a homogeneous material.
Their ability to prevent sound wave to propagate in a particular range of frequency demonstrates their use as
potential noise barriers. The sonic crystal considered in this work is an array of PVC cylinders (5 × 5) in air
bounded by acrylic sheets. This paper studies the sound transmission loss in the sonic crystal by changing the
location of the sidewalls. The optimized location of sidewalls of the sonic crystal to get wide band gap and
high sound transmission loss has been investigated. To increase the transmission loss, a periodic structure
having bi-periodicity, i.e., periodicity in two perpendicular directions is introduced. Both computational
(Finite Element simulation) and experimental work has been performed to study the sound transmission loss
and the band gaps. To bridge the gap between the two results, an improved finite element model has been pro-
posed with an aim to replicate the experimental situation more closely. Generally, in experiments, insertion
loss is calculated while numerically transmission loss is computed, and the two are compared. In this paper,
a comparison between insertion loss and transmission loss has also been made numerically, which is com-
pared with the experimental results.
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1. INTRODUCTION

Wave propagation over a periodic domain has been
an area of growing interest of researchers from last few
decades. Periodic structure implies the periodic
arrangement of scatterers embedded in a homoge-
neous material. Periodic structures do not act the
same with all frequencies of the wave. There are cer-
tain frequencies, which cannot propagate over peri-
odic structure made of particular dimensions and
materials. The usage of the periodic structure was ini-
tiated in 1887 by Lord Rayleigh [1]. He showed some
stopbands for electromagnetic waves in one-dimen-
sional periodic structure. Later in 1987, this idea was
used by Eli Yablonovitch and Sajeev John [2, 3], which
made the periodic structure a concerned area of
research interest. Depending on the area of applica-
tions, these periodic structures are named differently
such as sonic crystals, photonic crystals, and pho-
nonic crystals. When the periodic structures are made
for the electromagnetic wave propagation, they are
called photonic crystals. When the periodic structures
are made for the sound wave propagation, they are
called sonic crystals. This paper deals with the sound
propagation over the periodic structure.

In 1995, Martinez et al. [4] were the first group of
researchers who used a periodic structure subjected to
the sound waves. They used a three-dimensional peri-
odic sculpture, which was made by Eusebio Sempere
in Madrid. This was a circular structure having a large
outer domain. They measured the sound pressure
across this structure in the outdoor area and it was
found that the amplitude of the sound wave of fre-
quency ranging from 1500 to 2000 Hz reduced signifi-
cantly while propagating through this structure. This
was a splendid finding in the area of acoustic wave
propagation in the periodic structure and led to
increasing diversion of research in this area.

There are various applications of the sonic crystals
like frequency filter, sound diffusers, liquid sensors,
acoustic diode, acoustic cloaking etc. However, sonic
crystals are mainly known for noise barriers. A major
problem associated with the sonic crystal is that it does
not provide adequate transmission loss at a low filling
fraction. Martinez et al. [5] demonstrated a periodic
structure, in which a number of trees were arranged in
a regular pattern like sonic crystal. The results showed
a sound attenuation which was less than 10 dB
obtained at a frequency lower than 500 Hz.

Band gaps in a periodic structure are originated as
a result of Bragg’s scattering, and location of the center1 The article is published in the original.
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Fig. 1. A schematic diagram of a theoretical model of sonic
crystal.
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frequency of first band gap is calculated using Bragg’s
criteria [6]. Castineira et al. [7] presented an overlap-
ping numerical model that enabled to split a 3D prob-
lem into 2D. They used absorbing materials and a res-
onant cavity in the scatterers to enhance transmission
loss. Results satisfied the Bragg’s criteria and gave a
significant transmission loss. There are certain meth-
ods to calculate the band gap and dispersion properties
of a periodic structure. Different types of propagating
wave affect the dispersion properties of the structure.
More information about the sound wave leads to less
uncertainty in choosing the dispersion properties [8].
Zhao et al. [9] calculated the eigenmodes and band
gaps of a three-component pillared phononic crystal
plate using finite element method. They did a para-
metric study by varying the lattice constant, height and
diameter of the pillars and developed a low-frequency
vibration insulation in the plate structure. Morandi
et al. [10] calculated the sound insulation and the
reflection index over a sonic crystal. They did free field
measurements to window out the diffraction effect of
wave and calculated the band gap in a 1/3-octave band
numerically and verified with the experimental results.
Cai et al. [11] used Helmholtz resonators inside a peri-
odic structure to increase the transmission loss. The
results showed that the increasing the number of
Helmholtz resonators increased the sound reduction
performance of the periodic structure. Karabutov
et al. [12] studied the transmission spectrum of a peri-
odic structure consisting of solid layers in a liquid
medium. It was found that wave propagation in oppo-
site direction showed the interference nature with the
directly propagating wave and transmission spectrum
of a direct wave got changed with changing the param-
eters of the opposite pressure wave.

The frequency corresponding to the first peak of
the sound transmission loss in a sonic crystal can be
predicted using Bragg’s criteria [13]. By increasing the
filling friction and the diameter of scatterers, a sonic
crystal shows a wider band gap and higher sound
attenuation. A sonic crystal having filling fraction
larger than 0.44 shows a complete band gap [14].
There are many parameters influencing the sound
transmission loss in a sonic crystal, e.g. dimension of
scatterers, their number, their material properties, the
lattice constant, filling fraction, types of periodicity,
and shape of scatterers etc., which have been studied
by many authors [13–17]. However, the effect of the
location of external walls on the sound transmission
loss has not been studied previously.

In this work, the sound transmission loss is studied
numerically as well as experimentally by changing the
location of sidewalls in a sonic crystal. A bi-periodic
structure is proposed and the effect of varying the lat-
tice constant in the direction perpendicular to the
direction of sound propagation is analyzed by an
eigenfrequency study. The purpose of this work is to
find out the suitable position of external sidewalls to
get maximum sound attenuation. Finally, an improved
theoretical model of the sonic crystal is proposed, for
which results are found to be in a better match with the
experimental results.

2. FINITE ELEMENT ANALYSIS

A schematic diagram of a 2D sonic crystal is shown
in Fig. 1. There are total 25 scatterers arranged periodi-
cally in the middle of a rectangular domain (length 75 cm
and width varying from 24.6 to 29 cm). The width of
the sonic crystal is the distance between exterior side-
walls. The periodic distance between scatterers (a) is
5 cm and the radius of scatterers (r) is 2 cm. In mate-
rial properties, PVC properties are given to the scatterers
and air properties are given to the surrounding. The den-
sity of air is taken as 1.25 kg/m3 and the sound speed in air
is 343 m/s. The density of PVC is 1300 kg/m3 and the
sound speed in PVC is 1060 m/s.

A source of the plane wave is applied at the inlet of
the sonic crystal. Plane wave radiation conditions are
applied at the source and the receiver boundaries (left
and right). A sound-hard boundary condition (i.e.,
the boundary, through which the sound cannot prop-
agate) is applied at the scatterers and the exterior side-
walls of the sonic crystal (top and bottom). Particle
velocity of the sound wave perpendicular to the sound-
hard boundary is zero and sound waves are fully
reflected after colliding with this boundary. Eq. (1)
represents the sound-hard boundary condition. Due
to the sound-hard property of scatterers, sound waves
reflect repeatedly in the structure, which causes
acoustic interference inside the sonic crystal. There
are certain frequencies, which cannot propagate due
to the destructive interference generated in the sonic
crystal.

From the source boundary, forward traveling
sound waves collide with the scatterers, and after
reflecting from the scatterers, some of the waves travel
back. However, at receiver boundary, it receives only
the forward traveling waves. Eq. (2) and (3) show the
ACOUSTICAL PHYSICS  Vol. 64  No. 6  2018
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Fig. 2. Experimental setup after removing the top layer of
the absorbing material.
boundary conditions applied at the inlet and the outlet

respectively.

(1)

(2)

(3)

where p is the acoustic pressure, p0 is the incident radi-
ation pressure, n is the normal vector, r is the direction
vector, k is the wave vector, ω is the angular frequency
of the sound wave, ρ is density and cc is the sound
speed.

A COMSOL Multiphysics software is used for

finite element analysis in the pressure acoustic fre-

quency domain. For meshing, we did a convergence

study and found that the solution converges when the

maximum size of the element is taken as ten points per

unit minimum wavelength shown in Fig. 3a. Triangu-

lar elements are created in the geometry after meshing

with the maximum element size of 0.57 cm.
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To calculate the sound transmission loss (T), we

took an average sound power difference at the source

and the receiver side. On the logarithmic scale, it can

be represented by the following equation:

(4)

We calculated the transmission loss by changing

the various positions of the sound-hard wall (parame-

ter l in Fig. 1).

For the eigenfrequency analysis, the pressure

acoustic eigenfrequency domain is used in COMSOL

Multiphysics.

We apply the Bloch–Floquet periodicity condi-

tions on the boundary of a unit cell and vary the wave

vector over first Brillouin zone to calculate the com-

plete band structure. The Bloch–Floquet theorem is

applicable only for the periodic structure. Waves trav-

eling in the sonic crystals are Bloch waves [18] and

represented as:

(5)

where ϕ(x) is a periodic function. In the sonic crystal,
scatterers are arranged with a periodic distance a. So,
the periodic function can be represented as:

(6)

Combining Eq. (4) and eq. (5), we get Bloch−Flo-

quet equation (Eq. 7):

(7)

In the first Brillouin zone, kx varies from 0 to π/a,

where ky is 0 for the ΓX-direction, kx is π/a and ky var-

ies from 0 to π/a for the XM-direction, and kx and ky
both vary from 0 to π/a for the ΓM-direction [19]. The

band gap, in which the sound cannot propagate in all

these three directions, is called a full band gap.
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3. EXPERIMENTAL SETUP

In the experimental setup, 25 PVC pipes are

arranged periodically between two acrylic sheets (top

and bottom). The diameter and height of PVC pipes

are 4 and 7 cm respectively. Top and bottom faces of

the sonic crystal are covered with acrylic sheets with

dimensions 30 × 30 × 0.3 cm. The inlet and the outlet

of the structure are open for the sound wave propaga-

tion. The remaining two sides are closed using acrylic

sheets, which form the sidewalls of the periodic struc-

ture. The height of sidewalls is the same as the height of

PVC pipes. Acrylic sheets (surface density 3.54 kg/m2)

act as sound-hard boundaries for the sonic crystal. To

minimize the reflection, the experimental model is sur-

rounded by the acoustic fibrette material (NRC ~ 1).

Figure 2 shows the complete experimental set-up

after removing the upper layer of acoustic fibrette.

This whole setup is kept inside an acoustic enclosure

to nullify the effect of background noise. Background

noise of acoustic enclosure is measured using the

sound level meter CESVA SC310. The background

noise of the enclosure lies between noise criteria

NC-15 to NC-20 as shown in Fig. 3b. Noise criteria

(NC) curves are used to describe the background

noise. An NC curve sets a standard for the background

noise. For various locations like sound broadcasting,

recording studios, concert and recital halls, it falls

under NC-15 to NC-20. In the acoustic enclosure, the

maximum background noise at 125 Hz is 33.4 dB. A

minimum sound pressure level inside the acoustic

enclosure after the sound attenuation through the

sonic crystal is 47 dB, which is 10 dB higher than the

maximum background noise level. So, the effect of

background noise on the measurement is considered

to be negligible.

A Logitech speaker of diameter 7 cm is used as a

sound source. A ½" GRAS free-field response micro-

phone with National Instrument NI-4432 is used to

measure the sound pressure. The distance between the

speaker and the inlet boundary of the structure is 30 cm.

The distance between the outlet boundary of the sonic

crystal and the microphone is also 30 cm. The sound

incident from the speaker is averaged ten times. The

sound attenuation is measured in the form of insertion

loss. The experiments are done with and without the

sonic crystal, and the difference between the two sound

pressure levels gives the sound insertion loss.

4. EXPERIMENTAL AND THEORETICAL 
RESULTS

In this section, we will discuss the effect of the

location of sidewalls on the band gap and the sound

transmission loss. We did a finite element calculation

on a sonic crystal with various positions of sidewalls.

Figure 4a represents the sound transmission loss vs.
frequency for the sonic crystal. The results show that

transmission loss is highest when the sound-hard

boundary is present at a distance which is half of the

periodic constant from the center of end scatterers i.e.

l = a/2. Sound-hard wall positioned below 2.5 cm and

above 2.5 cm from the center of end scatterers result in

low transmission loss.

In the sonic crystal, every middle line between the

two scatterers parallel to the direction of propagation

of wave will act as a sound-hard boundary, and sound

cannot propagate through this boundary due to sym-

metricity. Therefore, sidewalls of the sonic crystal

must be at the distance a/2 from the center of end scat-

terers to get maximum transmission loss. Placing the

sidewalls at a different position only affects the magni-

tude of transmission loss, but location and width of the

band gap remain the same as shown in Fig. 4a.

Figures 4b, 4c, 4d show the experimental validation

of the finite element results at l = 4.5, 2.5 and 2.2 cm

respectively. l is the distance between the center of end

scatterers and sidewall. It is found from the results that

sound attenuation is higher when the sound-hard wall is

present at 2.5 cm (a/2) from the center of end scatterers.

Sound attenuation in experiments is calculated in

the form of insertion loss. In all three cases, there is a

sudden hike in the insertion loss in the lower frequency

region (below 1900 Hz), which is not present in the

theoretical results. Then, the band gap appears

between 1900 to 4700 Hz and shows a good amount of

insertion loss. Sonic crystal shows a clear dome shape

curve when location of the sidewall is 2.5 cm, and the

maximum sound insertion loss in this band gap is

30 dB. When the sidewalls are located at 4.5 cm, the

maximum sound insertion loss is 12 dB. In the third

case, when sidewalls are present at 2.2 cm, we got an

irregular shape of the curve in this region and the max-

imum insertion loss is 28 dB. In the experimental

result, the band gap matches well with the finite ele-

ment predictions, but transmission loss obtained in

finite element simulation is higher than the results

obtained in experiments. To bridge the gap between

the two results, an improved finite element model has

been proposed in section 5 to replicate the experimen-

tal situation in a more realistic way.

Figure 5a shows the transmission loss of a bi-peri-
odic structure versus a mono-periodic structure. A bi-
periodic structure means the structure has periodicity
in two directions. In a mono-periodic structure, the
lattice constant is the same in both x and y directions,
i.e. ax = ay = 5 cm. In a bi-periodic structure, lattice con-

stants are different in x and y directions, i.e. ax = 5 cm,

ay = 4.6 cm. The radius of scatterers is 2 cm in both

cases. Totally, twenty-five scatterers (5 × 5) are pres-
ent periodically with periodicity ax in the x-direction

and ay in the y-direction. The filling fraction in the bi-

periodic structure (0.546) is higher than in the mono-
ACOUSTICAL PHYSICS  Vol. 64  No. 6  2018
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Fig. 4. (a) Sound transmission loss in a sonic crystal with respect to different positions of sidewalls calculated using FEM,
(b) theoretical vs. experimental at l = 4.5, (c) l = 2.5 and (d) l = 2.2 cm.
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Fig. 5. FEM simulation results: (a) transmission loss in a mono-periodic vs. bi-periodic sonic crystal, (b) complete band structure
in a mono-periodic and (c) a bi-periodic sonic crystals.
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periodic structure (0.503). This is a good way of

increasing the filling fraction by introducing periodic-

ity in two directions. Increase in filling fraction leads

to higher sound insulation. Figure 5a shows sound

transmission loss and the band gap of bi-periodic and

mono-periodic structures when sound waves propa-

gate in the ΓX region. We found that sound transmis-
ACOUSTICAL PHYSICS  Vol. 64  No. 6  2018
sion loss and the bandwidth both are greater in the bi-

periodic than in the mono-periodic structure.

We did an eigenfrequency analysis using Bloch-

Floquet periodicity on the unit cell for two sonic crys-

tals having different directional periodicity but same

material properties. Figures 5b, 5c show the band

structure of two sonic crystals: (i) the structure is
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Fig. 6. A schematic diagram of the improved theoretical
model of a sonic crystal.

Sound-hard boundary

Perfect matched layer boundary
mono-periodic, i.e. ax = ay = 5 cm, and the radius of

scatterers is 2 cm, (ii) structure is bi-periodic, i.e. ax =

5 cm; ay = 4.6 cm, and the radius of scatterers is 2 cm.

We calculated the eigenfrequencies as functions of the
wave vector.

Figures 5b, 5c show six eigenmodes in the fre-

quency range from 0 to 12000 Hz. The results show a

complete band gap in both periodic structures. How-

ever, the structures differ at the position of the opening

of the stopband. In Fig. 5c, the first full band gap starts

at 3400 and ends at 4800 Hz. In Fig. 5b, the first full band

gap starts at 3500 and ends at 4400 Hz. For the second

case, the bandwidth is larger than for the first case.

In a full band gap, sound waves cannot propagate

in any direction (XΓMX). However, the band gap in

the ΓX region blocks the sound wave only in the x-

direction. For the first case, the band gap in the ΓX

region starts at 2000 and ends at 4400 Hz. For the sec-

ond case, the band gap in the ΓX region starts at 1800

and ends at 4800 Hz. The sonic crystal shows a wide

band gap of 2200 Hz in the first case and 3000 Hz in

the second case in the ΓX region. However, in the case

of bi-periodicity, the sonic crystal shows three full

band gaps below 12000 Hz, while the mono-periodic

structure shows only one full band gap. The band-

width of the first full band gap is larger in the bi-peri-

odic sonic crystal than in the mono-periodic one. The

bandwidth of the second and third full band gaps in

the bi-periodic structure are 600 and 750 Hz respec-

tively. The results show that decreasing the lattice con-

stant in the y-direction not only increase sound trans-

mission loss and bandwidth but also increase the num-

ber of band gaps.

5. IMPROVED THEORETICAL MODEL

In the previous section, sound attenuation is calcu-

lated by changing the location of sidewalls theoreti-

cally as well as experimentally, and results are in good

agreement. In the experimental results, the band gap

matches well with the finite element results but there
are some differences in the transmission loss obtained

in finite element simulation and experiments, as seen

in Fig. 4. There are some possible reasons for the dif-

ferences between these two results. First, the geometry

for finite element simulation is quite idealistic, while

in experiments, the geometry is somewhat different.

Second, in the theoretical model, we have an incident

plane wave on the inlet of the sonic crystal. However,

in the experimental model, some non-planar wave is

also present due to speaker profile and reflections in

the setup. Third, in the experimental model, PVC

scatterers are surrounded by four thin acrylic sheets.

During the sound propagation over the experimental

model, there may be vibration generation in the acrylic

sheets. In the theoretical model, sound-hard proper-

ties are given to the acrylic sheets, which may lead to

some differences. Fourth, we measured the sound

insertion loss experimentally while numerically we

calculated the sound transmission loss. Generally in

literature, [7] researchers do not differentiate between

transmission loss and insertion loss; however, we have

calculated these two results separately for the

improved theoretical model.

The previous theoretical model is a very idealistic

one, in which a plane wave directly strikes to the sonic

crystal. But it is quite difficult to achieve the plane

wave practically. To obtain the plane wave in the

experimental model, vertical inclined walls of acoustic

fibrette are used around the front and the rear end of

the experimental set-up, so that it can absorb the

diverging sound waves and minimize the reflections

from the surrounding environments and sound origi-

nated from the speaker can directly reach to the sonic

crystal. But every absorbing material has its own prop-

erties of the sound absorption, which is also a function

of frequency. This causes some discrepancy between

the theoretical and the experimental results shown in

Fig. 4. So, we tried to improve the theoretical model

by introducing the boundary condition of a sound

absorbing layer around the rear and the front end of

the model.

We focused on the ideal case of the sonic crystal in

which sidewalls are present at 2.5 cm (a/2) from the

center of end scatterers and tried to make a more real-

istic theoretical model with the experimental setup. To

obtain a more exact theoretical model, inclined per-

fectly matched layers (PML) are used as a boundary

condition to simulate this problem, and sound inser-

tion loss is calculated by the logarithmic difference of

the sound power at outlet with and without a sonic

crystal. The rest of the details is the same. PML is an

artificial sound absorbing layer, which is used as a

boundary condition to solve numerical problems. A

schematic diagram of the improved theoretical model

of the sonic crystal is shown in Fig. 6.
ACOUSTICAL PHYSICS  Vol. 64  No. 6  2018
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Fig. 7. Transmission loss vs. insertion loss in the experi-
mental and theoretical models when sidewalls are present
at 2.5 cm.
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In this case, we calculated transmission loss as well

as insertion loss and compared with the experimental

and the previous theoretical model results shown in

Fig. 7. The band gap location is same in all the cases,

but average transmission loss in the improved theoret-

ical model is less than the transmission loss in the pre-

vious model due to insertion of PML boundary condi-

tion. The maximum transmission loss in the previous

theoretical model is 48 dB, whereas the average trans-

mission loss in the improved model has significantly

reduced and shows a maximum value of 44 dB in this

region. Insertion loss in the improved theoretical

model is quite comparable with the experimental

insertion loss. The maximum insertion loss in the

improved model is 35 dB. The proposed improved

model has a better physical correlation with the exper-

imental setup, and therefore the results are in better

agreement compared to the simplistic finite element

model.

6. CONCLUSIONS

In this work, the effects of sidewalls and bi-period-

icity in the sonic crystals have been studied. Location

of the band gap and sound transmission loss is mea-

sured corresponding to the different locations of the

sound-hard sidewalls. The results show that an outer

wall of the sonic crystal situated at a distance of half of

the periodic distance from the center of end scatterers

is the best to give wide band gap and high transmission

loss. To improve the transmission loss, bi-periodicity

is incorporated in the structure by reducing the lattice

constant in the y-direction. When the result of the bi-

periodic structure is compared with the mono-peri-
ACOUSTICAL PHYSICS  Vol. 64  No. 6  2018
odic structure, it is found that the bi-periodic struc-

ture shows higher transmission loss than the mono-

periodic structure with an increased number of band

gaps. Therefore, it is concluded that exterior sidewalls

of a sonic crystal should be at the distance ay/2 from

the center of end scatterer to get maximum transmis-

sion loss; here ay is the lattice constant in the y-direc-

tion. Two periodic structures having similar material

properties but a different type of periodicity, show dif-

ferent bandwidth and sound transmission loss. This

property can be used as per the requirement of the

incoming noise frequency component and the space

considerations. An improved theoretical model, which

shows better interpretation correlating with the exper-

iment, is also simulated. Insertion loss predicted by

the new theoretical model is in better agreement with

the insertion loss found in the experiments. In the

future, boundary conditions can be improved by

incorporating the impedance boundary for the PML,

which matches with the impedance of acoustic

fibrette.
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