АКУСТИКА ПОМЕЩЕНИЙ. МУЗЫКАЛЬНАЯ АКУСТИКА

УЛК 534.26

О МАКСИМАЛЬНОМ ПОГЛОЩЕНИИ ЗВУКА РЕЗОНАТОРОМ ГЕЛЬМГОЛЬЦА В ПОМЕЩЕНИИ НА НИЗКИХ ЧАСТОТАХ

© 2018 г. Н. Г. Канева, b, *

^aAO "Акустический институт им. акад. Н.Н. Андреева" Россия, 117036 Москва, ул. Шверника 4

^bМГТУ им. Н.Э. Баумана
Россия, 105005 Москва, 2-я Бауманская ул. 5, стр. 1

*e-mail: nikolay.kanev@mail.ru
Поступила в редакцию 27.03.2018 г.

Рассмотрена задача о поглощении звука резонатором Гельмгольца в помещении с абсолютно жесткими стенками. Определены параметры резонатора — коэффициент трения, упругость и масса — при которых обеспечивается максимальное поглощение в окрестности первого собственного колебания помещения.

Ключевые слова: архитектурная акустика, собственные моды помещения, резонатор Гельмгольца **DOI:** 10.1134/S0320791918060059

Резонатор Гельмгольца является эффективным поглотителем звуковых волн [1-4]. При соответствующем подборе параметров резонатора можно добиться максимального поглощения, которое может быть обеспечено малым по сравнению с длиной звуковой волны рассеивателем, в свободном пространстве [1], волноводах [3-5], помещениях [6-8]. На практике резонаторы Гельмгольца часто используются для демпфирования собственных резонансов помещения и сглаживания его передаточной функции. Трудности в подборе параметров резонатора для максимального поглощения вызваны тем, что взаимодействие резонатора и нормальных мод помещения приводит к изменению собственных колебаний помещения. Представляет интерес определить максимально возможное поглощение звука резонатором в помещении в области самых низких нормальных частот, для чего рассматривается задача в следующей постановке.

Звуковое поле в помещении с абсолютно жесткими стенками может быть представлено в виде суперпозиции нормальных незатухающих мод. При внесении в помещение резонатора с трением все моды становятся затухающими [9], при этом количественно эффективность поглощения может быть охарактеризована коэффициентом затухания для каждой моды. Наибольший коэффициент затухания будут иметь моды, собственные частоты которых близки к собственной частоте резонатора. Эффективнее всего поглощение звука происходит на изолированных собственных частотах помещения [7, 8], т.е. на первых резо-

нансах помещения. Таким образом, необходимо определить параметры резонатора, при которых коэффициент затухания первой моды становится максимальным.

Решение поставленной задачи будем проводить, следуя [9]. Акустический импеданс резонатора Гельмгольца может быть записан в виде

$$Z = \frac{1}{S^2} \left[R + i \left(\frac{K}{\omega} - \omega M \right) \right], \tag{1}$$

где M — масса воздуха в горле резонатора, R — коэффициент трения, K — коэффициент упругости, S — площадь поперечного сечения горла резонатора, ω — частота звука.

Сопротивление излучения резонатора в помещении с объемом V, ограниченном абсолютно жесткой поверхностью, имеет вид

$$Z_r = \frac{i\omega\rho c^2}{V} \sum_{n\geq 1} \frac{p_n^2(r)}{\omega^2 - \omega_n^2},$$
 (2)

где $p_n(r)$ и ω_n — фундаментальные функции и собственные частоты помещения без резонатора, n=1,2,3,...,r — радиус-вектор точки расположения резонатора, ρ — плотность среды в помещении, c — скорость звука в ней. Нумерация $p_n(r)$ и ω_n производится в порядке возрастания собственных частот.

Помещение с резонатором Гельмгольца образуют колебательную систему, собственные частоты которой находятся из уравнения

$$Z + Z_r = 0. (3)$$

Очевидно, что в случае бездиссипативного резонатора все корни (3) вещественны. Если резонатор обладает ненулевым трением, то корни (3) комплексны, а их мнимые части определяют скорость затухания соответствующей моды.

В качестве параметров резонатора выберем его собственную частоту в свободном пространстве $\omega_0 = \sqrt{K/M}$, а также безразмерные величины

$$r = \frac{\omega_l V}{\rho c^2 S^2} R \quad \text{M} \quad m = \frac{\omega_l^2 V}{\rho c^2 S^2} M, \tag{4}$$

характеризующие трение и массу резонатора соответственно. Безразмерный коэффициент трения, очевидно, может принимать значения $0 \le r < \infty$. Оценим возможные значения параметра m. Если помещение имеет характерный размер L, то его объем $V \sim L^3$, а первая собственная частота $\omega_1 \sim c\pi/L$. Для круглого горла резонатора с диаметром d его масса равна $M = \rho l \pi d^2 / 4$, где l -длина горла резонатора. Из (4) получаем $m \sim 4\pi \, Ll / d^2$. Длина горла резонатора может быть устремлена к нулю, однако в этом пределе масса резонатора не становится нулевой и определяется присоединенной массой отверстия. Эффективная длина горла резонатора составляет $l \sim d$, т.е. для короткого горла получаем оценку $m \sim 4\pi L/d$. Отверстие можно считать малым по сравнению с характерным размером помещения, если $L \gg d$. Для расчета можно принять L/d=10, тогда минимальное значение параметра, характеризующее массу резонатора, составляет $m \sim 10^2$. Максимальное значение *m* не ограничено.

Отнормируем все частоты задачи на самую низкую собственную частоту помещения ω_1 , т.е. введем безразмерные частоты $\omega' = \omega/\omega_1$, $\omega'_0 = \omega_0/\omega_1$, $\omega'_n = \omega_n/\omega_1$. Далее штрихи у величин ω' , ω'_0 , ω'_n будем опускать.

Для удобства положим, что резонатор находится в пучностях всех мод, т.е. $p_n^2(r) = 1$ для всех n. Для этого, например, в прямоугольном помещении резонатор необходимо поместить в угол. Тогда (3) с учетом (1) и (2) преобразуется к виду

$$r + im\left(\frac{\omega_0^2}{\omega} - \omega\right) + i\omega \sum_{n \ge 1} \frac{1}{\omega^2 - \omega_n^2} = 0.$$
 (5)

Для высокочастотного случая $\omega_0 \gg \omega$ корни (5) найдены в [9]. Исследуем, как ведут себя корни (5)

в зависимости от параметров резонатора вблизи первого резонанса помещения. Корни (5) будем искать численно, для определенности рассмотрим помещение, имеющее форму прямоугольного параллелепипеда, длины сторон которого относятся как 5:2:1. В этом случае первые собственные частоты помещения имеют значения $\omega_1 \equiv 1, \; \omega_2 = 2, \; \omega_3 = 2.5, \;$ которые и учитываются в сумме в (5).

На рис. 1а приведены первые два корня уравнения (5) для m = 100 и $\omega_0 = 1$ при изменении коэффициента трения от нуля до бесконечности, а на рис. 1б их мнимые части. Стрелками на рис. 1а указано направление движения корней по комплексной плоскости при увеличении значения коэффициента трения. В случае бездиссипативного резонатора, т.е. при r = 0, оба корня вещественны, обозначим их Ω_0 , Ω_1 и отметим на комплексной плоскости на рис. 1а проколотыми точками. Их нумерация начинается с n = 0, поскольку помещение с резонатором имеет дополнительную степень свободы и собственную частоту. Для $n \ge 1$ все частоты Ω_n оказываются выше ω_n [9], но при этом Ω_0 оказываются ниже ω_0 . Будем увеличивать значение $\it r$ с нулевого значения до бесконечного и отслеживать, как изменяются собственные частоты. При ненулевом трении резонатора собственные частоты становятся комплексными, а соответствующие им моды затухающими. Введем коэффициент затухания моды δ_n , равный, но противоположный по знаку мнимой части соответствующего корня уравнения (5). Коэффициент затухания первой моды δ_1 с увеличением трения достигает максимального значения, а коэффициент затухания нулевой моды δ_0 монотонно увеличивается. При дальнейшем увеличении трения коэффициент затухания уменьшается и стремится к нулю, а собственная частота первой моды к од. Таким образом, сильно задемпфированный резонатор не оказывает влияния на звуковое поле в помещении.

Итак, при наличии в помещении резонатора с собственной частотой, близкой к первой резонансной частоте помещения $\omega_{\rm l}$, в окрестности этой частоты есть два корня. Скорость затухания звука будет определяться наименьшим коэффициентом затухания соответствующих мод. Так, на рис. 16 максимальный коэффициент затухания первой моды равен $\delta_{\rm l}=0.044$ при коэффициенте трения r=19, при этом коэффициент затухания нулевой моды равен $\delta_{\rm 0}=0.053$. Поэтому затухание звука в помещении с резонатором в окрестности частоты $\omega_{\rm l}$ будет определяться коэффициентом затухания $\delta_{\rm l}$.

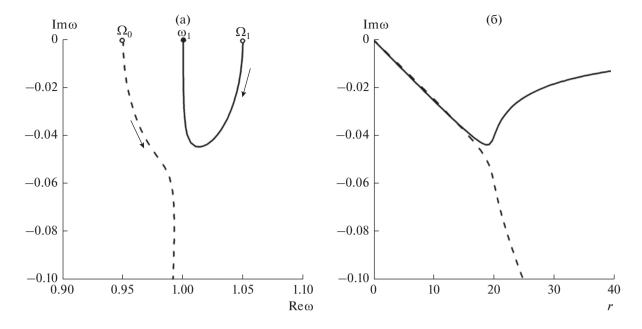


Рис. 1. Первые два корня уравнения (5) при изменении коэффициента трения r от 0 до ∞ (a) и мнимая часть этих корней (б) для резонатора с параметрами $\omega_0 = 1$ и m = 100. Пунктирной линей обозначения нулевая мода (n = 0), сплошной — первая (n = 1).

При подборе собственной частоты резонатора ω_0 можно добиться большего сближения ветвей корней уравнения (5), чем в примере на рис. 1а, и в пределе найти такую частоту ω_0 (для рассматриваемого примера она равна 1.0026), при которой, как показано на рис. 2, две ветви корней имеют общую точку ω_{01} . В этом случае коэффициенты затухания обеих мод имеют одинаковое значение, и оно является максимальным при заданном значении m, т.е. на этой частоте резонатор обеспечивает максимальное поглощение звука в помещении в окрестности первого резонанса помещения.

Определим параметры резонатора ω_0 , m и r, при которых обеспечивается максимальное поглощение на первом резонансе помещения. С этой целью упростим (5), для чего представим сумму, входящую в (5), следующим образом:

$$\sum_{n \ge 1} \frac{1}{\omega^2 - \omega_n^2} = \frac{1}{\omega^2 - 1} - \alpha,$$
 (6)

где сумма $\alpha = -\sum_{n\geq 2} \frac{1}{\omega^2 - \omega_n^2}$ слабо зависит от частоты в окрестности $\omega = 1$ и может полагаться константой $\alpha = -\sum_{n\geq 2} \frac{1}{1-\omega_n^2}$.

С учетом (6) уравнение (5) запишется в виде

$$r + im\left(\frac{\omega_0^2}{\omega} - \omega\right) + i\omega\left(\frac{1}{\omega^2 - 1} - \alpha\right) = 0.$$
 (7)

Уравнение (7) представляет полином четверной степени, имеющий четыре корня, при этом две пары корней имеют одинаковую мнимую часть и одинаковую по значению, но различающуюся знаком, действительную часть. С учетом

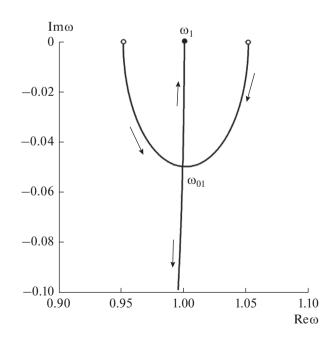


Рис. 2. Кратный корень ω_{01} при $\omega_{0} = 1.0026$ и m = 100. Стрелками указано смещение корней по кривой при увеличении коэффициента трения r.

этого, а также того, что искомый корень $\omega_{01} = \tilde{\omega} - i\tilde{\delta}$ уравнения (7) является двукратным, можно воспользоваться теоремой Виета для уравнения четвертой степени и найти соотношения между коэффициентами уравнения (7) и кратными корнями:

$$\tilde{\delta} = \frac{r}{4(m+\alpha)},\tag{8}$$

$$\tilde{\omega}^2 + 3\tilde{\delta}^2 = \frac{1 + \alpha + m(\omega_0^2 + 1)}{2(m + \alpha)},\tag{9}$$

$$\tilde{\delta}\left(\tilde{\omega}^2 + \tilde{\delta}^2\right) = \frac{r}{4(m+\alpha)},\tag{10}$$

$$\tilde{\omega}^2 + \tilde{\delta}^2 = \sqrt{\frac{m}{m+\alpha}} \omega_0. \tag{11}$$

Из (8)-(11) находим коэффициент затухания

$$\tilde{\delta} = \frac{1}{2\sqrt{m+\alpha}},\tag{12}$$

который достигается при коэффициенте трения резонатора $r=2\sqrt{m+\alpha}$ и его собственной частоте $\omega_0=\sqrt{\frac{m+\alpha}{m}}$. При этом абсолютное значение кратного корня равно $|\omega_{0,1}|=1$.

Из (12) очевидна оптимизация массы резонатора: она должна быть минимально возможной. Однако, как показано выше, значения параметра m не могут принимать малые значения; характерное минимальное значение составляет 10^2 . В рассмотренном выше примере прямоугольного помещения с соотношением сторон 5:2:1 значение параметра α составляет 1.38. Поэтому максимально достижимый коэффициент затухания зависит только от m и равен

$$\tilde{\delta} = \frac{1}{2\sqrt{m}}.\tag{13}$$

При m = 100 коэффициент затухания равен $\tilde{\delta} = 0.05$.

Таким образом, для максимального поглощения звука на первом резонансе помещения коэффициент трения резонатора должен быть равен $r=2\sqrt{m}$, его масса удовлетворять условию $m\sim10^2$, а упругость подбирается таким образом, чтобы собственная частота в свободном пространстве была близка к первой резонансной частоте помещения $\omega_0\approx1$.

Автор выражает признательность М.А. Миронову за ценные советы при подготовке настоящей работы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Исакович М.А. Общая акустика. М.: Наука, 1973.
- 2. *Комкин А.И.*, *Миронов М.А.*, *Быков А.И*. Поглощение звука резонатором Гельмгольца // Акуст. журн. 2017. Т. 63. № 4. С. 356—363.
- 3. *Канев Н.Г., Миронов М.А.* Монопольно—дипольный резонансный поглотитель в узком волноводе // Акуст. журн. 2005. Т. 51. № 1. С. 111—116.
- Лапин А.Д. Поглощение звука резонаторами в цилиндрическом волноводе // Акуст. журн. 2006. Т. 52. № 5. С. 716—719.
- Selamet A., Dicky N.S., Novak J.M. Theoretical, computational and experimental investigation of Helmholtz resonators with fixed volume: lumped versus distributed analysis // J. Sound Vibr. 1995. V. 187. P. 358–367.
- 6. Fahy F.J., Schofield C.A. Note on the interaction between a Helmholtz resonator and an acoustic mode of an enclosure // J. Sound Vibr. 1980. V. 72. P. 365–378.
- Yu G., Li D., Cheng L. Internal resistance optimization of a Helmholtz resonator in noise control of small enclosures // Proc. of 14th International Congress on Sound and Vibration, Cairns, Australia. 9–12 July, 2007
- 8. *Klaus J., Bork I., Graf M., Ostermeyer G.-P.* On the adjustment of Helmholtz resonators // Appl. Acoust. 2014. V. 77. P. 37–41.
- Лапин А.Д. Низкочастотное звуковое поле в помещении с резонатором Гельмгольца // Акуст. журн. 2000. Т. 46. № 4. С. 563–565.