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Abstract—In this study the method of source images for the problem of sound propagation in a penetrable
wedge [G. Deane and M. Buckingham, J. Acoust. Soc. Am. 93 (1993) 1319—1328] is revisited. This solution
is very important three-dimensional (3D) benchmark in computational underwater acoustics, since a wedge
bounded from above by the sea surface and overlying a sloping penetrable bottom is the simplest model of a
shallow-sea waveguide near the coastline. The corrected formulae for the positions of the source images and
bottom images are presented together with the explanation of their derivation. The problem of branch choice
in the reflection coefficient is thoroughly discussed, and the corresponding explicit formulae are given. In
addition, numerical validation of the proposed branch choice schemes and the resulting wedge problem solu-
tions are presented. Finally, source images solution is computed for a series of examples with different ratios
of shear and bulk moduli in the bottom. The interplay between the acoustic-elastic waves coupling and the

horizontal refraction in the wedge is demonstrated.
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INTRODUCTION

Significant advances in the performance of modern
computers achieved over past two decades boosted the
development of the numerical three-dimensional
(3D) sound propagation methods in underwater
acoustics. Although direct finite-difference and
finite-element methods are not yet capable of han-
dling full-scale 3D problems, various approximate
techniques such as 3D parabolic equations (PEs) are
remarkably successful in this field. At the same time,
any approximation or numerical technique requires
some reliable benchmarks to adjust its parameters and
estimate its accuracy. For instance, in the case of 3D
PEs it is always necessary to understand which terms
of the square root approximation are crucial for han-
dling various propagation effects (e.g. horizontal
refraction, mode coupling, etc), and which of them
can be neglected. Such in-depth understanding can be
drawn from the comparison of the numerical results
with the analytical solutions of some 3D propagation
problems. Such analytical benchmark solutions are
quite scarce, and one of the most important among
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them is the solution of the 3D wedge problem by the
method of source images [1—3] proposed by Deane
and Buckingham back in 1993.

The basic idea of this method is the decomposition
of the total sound field into a sum of contributions
from a series of source images. Each source image cor-
responds to the waves that were emitted by the source
and underwent a certain number of interactions with
the wedge boundaries [1], i.e. the surface and the bot-
tom (see the next section).

As was mentioned above, the main application area
of the source images solution is the validation of the
numerical 3D models for sound propagation in ocean
waveguides [4]. So far, the validations have been car-
ried out mainly for models with the fluid bottom [5,
6]. It is widely accepted however that in the near future
a benchmark solution for 3D seismo-acoustic propa-
gation problems will be in demand, once the models
and codes for 3D seismo-acoustic fields modeling are
developed and implemented.

In this study, we revisit the solution of Deane and
Buckingham in an attempt to clarify some points of
their paper [1] and introduce some minor corrections
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Fig. 1. Geometry of the wedge-like waveguide.

to their formulae. More precisely, we derive corrected
formulae for angular coordinates of source images and
inclination angles of bottom images, and provide a
clear and detailed explanation of the branch choice in
the reflection coefficient (which was not presented in
the original study) [1]. Consistency of the proposed
branch choice scheme and the accuracy of the result-
ing solution is validated by direct comparison against
reference solutions. Furthermore, we compute the
“source image solution” for a series of examples where
acoustic wedges overly elastic bottom with different
values of shear waves (S-waves) velocity. Effects of
both bottom elasticity and horizontal refraction on the
interference structure of the sound fields are presented
and discussed.

PROBLEM STATEMENT

Consider a shallow-water waveguide shown in
Fig. 1. It is formed by a wedge-like water layer overly-
ing a penetrable bottom and bounded from above by
the sea surface. The wedge apex angle is denoted by o.,,.
The sound speed and density in the water column are
¢, and p,, while the respective parameters for the bot-
tom are ¢, and p,. The attenuation at the bottom is
assumed to be B, decibels per wavelength. In the case
of an elastic bottom we also introduce the S-wave
speed ¢,, and the corresponding attenuation [3,,. Here-
after we discuss the problem of the computation of
acoustic field produced by a time-harmonic point
source of frequency flocated inside the water column
of this waveguide (referred to as penetrable wedge).

Although this problem looks very simple, it exhibits
many interesting and complicated sound propagation
effects, including but not limited to, mode coupling,
horizontal refraction, and diffraction at the wedge
apex. The accurate simulation of all propagation fea-
tures, that arise in this problem, requires extremely
sophisticated mathematical technique [12]. To certain
extent, this problem is a compendium of major chal-
lenges that one can encounter in the computational
underwater acoustics.
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Wave diffraction at the wedge apex is arguably the
most difficult point of the wedge problem solution,
especially in the case of very small apex angle. Much
to our relief, the contribution of the diffracted wave is
negligible on the typical scale of underwater acoustics
(i.e. in the case when the apex is very far from the
source, and the apex angle is very small).

According to Deane and Buckingham [1], the
acoustical field in this case can be represented as a sum
over the so-called source images S, ; numbered by the
two indices (see explanation in the next section). The
field due to the source image S, ; is denoted by p, /,
and the total field inside the wedge can be expressed as

p(x,y,2)

N
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The contribution of each source image can be writ-
ten in the form of the plane wave decomposition as

po =] j[HV(cp)}
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where n, is the number of surface reflections and is
determined by the values of n;, and /; the product term
in the square brackets represents the total reflection
coefficient associated with this particular source
image; R = (x, y,, z,) is the position of the receiver in a
local coordinate system (see Fig. 3) which originates
from this specified source image; k = (k,, k, k,) is the
wavenumber vector, with components k,, k, and k, in the

X,, ¥,» and z, directions respectively and satisfying k, = (k* —

k:— kyz)l/ 2, k= w/c, and m is the angular frequency of the
source. For the case z, = 0, we require Im(k,) = 0 to
ensure that the plane wave components satisfy the
radiation condition at infinity, and vice versa.

With the transformations

k, = ksin®cos 0, x, = Rsin{cos&,
k, = ksin®sin¢, y, = Rsin{sing, 3)

k, = kcos, z, = Rcos{,

Eq. (2) can be rewritten in a form that is more prac-
tical for numerical implementation:
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