
IS S N  1063-7710, Acoustical Physics, 2016, Vol. 62, No. 6, pp. 663—671. © Pleiades Publishing, Ltd., 2016.

CLASSICAL PROBLEMS 
OF LINEAR ACOUSTICS AND WAVE THEORY

Acoustic Scattering on Spheroidal Shapes Near Boundaries1
Touvia Miloh

School of Mechanical Engineering, University of Tel-Aviv, Tel-Aviv 69978, Israel 
e-mail: miloh@eng.tau.ac.il 
Received September 15, 2015
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1. INTRODUCTION
Recently (see, for example, [1, 2]), we have analyt

ically considered several practical aspects of free-sur- 
face hydrodynamics (e.g., wave resistance, wave dif
fraction etc.) of prolate spheroidal-like rigid vessels 
moving in some bounded flow domains (i.e., shallow 
water, near a vertical bank or along a straight channel). 
The field equation in these cases (incompressible fluid 
and irrotational flow), is the Laplace equation, and 
the corresponding linear boundary-value problem 
involving a spheroidal rigid hull is solved using ele
mentary spheroidal harmonics expressed in terms of 
the Legendre’ associate polynomials [3, 4]. However, 
if some nearby planar boundaries (i.e., vertical wall, 
flat bottom or free surface) are present, the solution of 
the corresponding hydrodynamic problem becomes 
more intricate and in general cannot be determined 
analytically (compared to the unbounded case). The 
confined problem can still be numerically resolved by 
solving a set of coupled Fredholm integral equations of 
the second- kind using a specific (e.g., finite element 
or finite difference) numerical scheme. Nevertheless, 
it has been demonstrated in [1, 2] that by using a spe
cial theorem [5], which expresses any external sphe
roidal harmonic in terms of its “ultimate” image sin
gularity system (consisting of interior multipoles dis
tributed along the body axis), one can still get a semi
analytic solution even for the case of a spheroid mov
ing in the proximity of other planar bounding surfaces. 
A similar approach can be also used for other physical

1 The article is published in the original.

problems governed by the Laplace equation (e.g., 
inviscid hydrodynamics, heat conduction, electro
static, electrokinetics etc.), entailing tri-axial ellipsoi
dal objects [6], thus enabling us to consider some new 
practical problems of mathematical-physics.

In this note, we are mainly interested in the wide 
class of 3D wave scattering problems involving prolate 
spheroidal (including penetrable and elastic) shapes, 
where the field equation is governed by the Helmholtz 
rather than by the Laplace’s equation [7], such as 
acoustic and electromagnetic wave scattering by pro
late and tri-axial ellipsoidal scatters [8—12], electro
static [13], electrophoresis [14], creeping flows [15], 
antennas [16], nuclear physics [17], optics [18], etc. 
The traditional way for solving the Helmholtz equa
tion, which is subject to some linear boundary condi
tions (i.e., Dirichlet, Neumann or Robin) applied on 
spheroidal shapes, generally employ the so-called 
“spheroidal wave functions” (SWF) which have been 
extensively explored in the literature [19—24]. Indeed, 
spheroidal (prolate or oblate) wave functions find 
many applications in science and technology, mainly 
for computing wave diffraction from objects of various 
sizes (spanning from nuclear physics to cosmology). 
In this context, we mention in particular the case of 
sound backscattering from spheroidal shapes of differ
ent surface properties (coating) due to some external 
acoustic excitations and disturbances.

The salient acoustic problem of wave scattering and 
diffraction from a spheroidal-like vessel lying in an 
infinite domain which is exposed to an incident plane 
(monochromatic) sound wave can be naturally
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resolved by using expansions in terms of SWF. The 
first to analytically tackle this problem by using SWF 
based techniques, were probably Spence and Granger 
[25], but their solution was restricted to obtaining only 
the far-field acoustic scattering (cross-section) pat
terns. The same problem has continued to attract 
attention over the years (even to date) and there is a 
vast body of literature on SWF (see, for example, [26— 
44]). Nevertheless, it is important to note that most of 
these studies still deal with acoustic scattering from a 
single spheroidal shape, namely without considering 
mutual interaction effects due to nearby boundaries, 
free surfaces or other interacting obstacles on the 
resulting wave scattering. In order to analytically 
resolve such problems, it is advantageous to first 
obtain (in a similar manner to [1, 2]), a corresponding 
expression for the “ultimate” singularity system of any 
external SWF eigensolution. Here we derive an explicit 
expression which provides a generalization of the 
Laplacian so-called “spheroid theorem” [5] for the 
more general Helmholtz equation. A similar expres
sion is also obtained in this note as a limiting case for 
spherical shapes and is compared against the corre
sponding multipole expansion given in Hobson [3].

The structure of the paper is as follows: In Sect. 2 
we briefly discuss the various angular and radial SWF 
using the notation and terminology of Flammer [20]. 
The known expressions for the “ultimate” (internal) 
system of singularities (multipoles) for both spherical 
and spheroidal (Laplacian) harmonics, are re-derived 
and explicitly given in Sect. 3, together with their new 
extensions for physical cases governed by the Helm
holtz field equation. In particular, we refer to Eqs. (10) 
and (27), which provide explicit expressions for any 
external separable eigensolutions, in terms of a distri
bution of multipoles lying at the origin or along the 
axis between the two foci. The same integral expres
sion is also shown to be amenable for obtaining a use
ful asymptotic form for the far-field sound scattering 
(cross-section). The above methodology is finally 
demonstrated in Sect. 4 for the special axisymmetric 
case of sound scattering from a rigid spheroid placed 
near a planar (hard or soft) wall and subject to an inci
dent axial plane acoustic wave. Yet another practical 
acoustic example, involving wave scattering of a hard 
spheroid placed on the axis of a cylindrical duct, is 
presented in Sect. 5. In both cases we choose to dwell 
here only on analytic rather than on numerical aspects 
and derive the corresponding set of linear equations 
for the amplitudes of the scattered wave field. A closed 
form leading-order asymptotic solution of these equa
tions is presented under the “large-spacing” approxi
mation. Detailed numerical wave-scattering simula
tions for some factual cases based on the above meth
odology, including non-symmetric (oblique 
incidence) scenarios, will be presented elsewhere.

The following Helmholtz or “wave” equation 
arises in many branches of mathematical physics (e.g.
[7]), such as acoustics, electromagnetic diffractions, 
low-Reynolds number flows and induced-charge 
electro-osmosis:

(V2 + к 2 )ф = 0, (1)
where the parameter k can be real or complex. In this 
work we are interested in obtaining separable solutions 
of (1) for the real function ф in terms of the triply 
orthogonal prolate spheroidal coordinate system 
(p, Z, ф) which are related to the Cartesian (x, y, z) 
ones by

x = dpZ, y  + iz = d (1 -  p2) / (Z2 - 1 ) / е 1ф. (2)
Here d represents half the distance between the two 
spheroid foci: 1 > p > -1 , ^  > Z > 1 and 2п > ф > 0. 
Denoting the major and semi axes of the spheroid by a

/ 2  2 \ 1/2and b respectively, then d  = (a -  b ) and
/ 2 / 2 \-1/2Z 0 = (1 -  b / a ) > 1 represents the surface of the

spheroid.
Using Flammer’s [20] notations, it is possible to 

express general separable solutions of (1) by using the 
so-called “spheroidal wave functions”, which depend 
on the spheroidal coordinates and the dimensionless 
parameter: c  = k d . For example, an “interior” eigen- 
solution of (1), which is regular at the origin and 
diverges far from it, can be written as
Smn (c, p) (c, Z)e‘mip. In a similar manner, the cor
responding “exterior” eigensolution of (1), which is 
singular at the origin and vanishes at infinity, is given
by Smn (c, p)Rmn (c, Z)e‘m(p. Here m, n denote any two 
independent positive integers, Smn (c, p) represents the
“angular” SWF of the first- kind and R ^  (c, Z) are 
the corresponding “radial” SWF of the first and sec
ond kind respectively. These functions have been dis
cussed and analyzed in great length in several texts 
(see, for example, [7, 19—24]) and for reasons of brev
ity details are not repeated here. Nevertheless, it is 
important to mention in the present context that the 
angular functions Smn (c, p) are orthogonal over the 
interval |p| < 1 and can be expressed as an infinite 
series involving the common associate Legendre poly
nomials Pnm(p) and some prescribed coefficients

 ̂mn
(denoted in [16] as dr (c) where r  = 0, 1, 2, ...). In a 
similar way, the two radial functions R^n (c, Z) and
R̂ mi (c, Z) can also be written as products of the same 
coefficients with the spherical Bessel or Hankel func
tions respectively. There exist several computational 
software for evaluating both the angular and radial
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SWF for any order (m, n) and dimensionless parame
ter c  [23, 40, 42].

The fundamental (Green’s function) solution of 
the Helmholtz equation (1) can be expanded in terms 
of SWF (see [20], Eq. (5.2.9)) as

ikRpq “ “ „
= 2i X X ^ ^ Smn(C, b p)Smn(C, b q) ^

R  t ^ t ! n Nmn , (3)
x R®(C,zp)Rmmi(c,Zq)cosm(9 q -фр)

3. EXPRESSIONS IN TERMS 
OF THE “ULTIMATE” SINGULARITY SYSTEM

3.1. Spherical Coordinates
A useful expression for any spherical external

eigensolution R “(n+1)Pnm(|i)e‘mip, satisfying the Laplace 
equation (k = 0) and expressed in terms of series of 
multipoles lying at the origin, can be obtained by a 
proper Cartesian differentiation of the fundamental 
Green’s function 1/R (see [3], p. 134) as

where Zq > Zp., e0 = 1 and em = 2 for m Ф 0. Here Rpq 
represents the radial distance between an “interior” 
point P  (bp, Zp, фp ) lying within the spheroid and 
some “external” point Q (bq, Zq,фq). The coefficient 
Nmn in (3) is associated with the orthogonality proper
ties of the angular wave functions and is defined by 
(see [20], Eqs. (3.1.32), (3.1.33))

1
 ̂Smn (c, b )Smn(c  b)db = 5nnN mn , (4)

-1
and can be explicitly expressed (Eq. (3.1.33) of[20]) in

mn
terms of the coefficients d r (c). As k ^  0, the Helm
holtz equation (1) reduces to the Laplace’s equation, 
possessing the fundamental solution 1/Rpq, which can 
be accordingly expressed in terms of the associated
Legendre’ functions P^ 1 (b) and Q? (Z) (see [3], 
p. 416) as

 ̂ n

d  = Z Z ( -  1)m e m (2n +1)
Pq n=0 m=0

X P„m(b p )P„m(b q )Pnm(Z p )Q,T(Z q )cos Шф -  фp ).
In comparing (3) with (5) for k = c  = 0, one notes that 
Smn (0, b) ^  Pm (b) and that (0, Z) and я ? ' (0, Z)
are proportional to P ” (Z) and Q?  (Z) respectively.

An equivalent representation in terms of spherical 
coordinates (R, b, ф) can be also obtained directly 
from (2) by simply letting d  ^  0 and Z ^  ^ , such 
that R = d  Z denotes the radial (finite) coordinate. The 
corresponding expression for the Green’s function is 
then given by (e.g., [7], Eq. (11.3.44))

( n  -  m ) !  

( n  +  m ) ! (5)

ikRp,e
kRp = 2iX X eш (2n + 1

=0 m=0

( n  - m ) ! P ? ( b  )
( n  +  m ) !  n ( b p )  ( 6 )

X P “ (b q ) j n ( k R p  )hn1)(kRq )cos m ^ q  -  Фp ),

n

where j n (z) and h® (z) represent the common spher
ical Bessel functions of the first and third (Hankel) 
kind respectively (see [21], p. 437).

Pm (b) e m
Rn+1

(-1)n э n-m fA  + i A 1m 1
(n -  m)! dxn m Vdp dzJ R

(7)

The above relation suggests that any exterior spherical 
potential function, which decays to zero at infinity,

-л k+ m + n

can be represented by a series of multipoles —d---------
dx ду  dz

of order k + m + n (k, m, n are arbitrary positive inte
gers) located at the origin. This also means that the 
sphere’s center (origin) constitutes the “ultimate” (or 
minimal) geometrical domain (a single point in this 
case), onto which all internal singularities of the exter
nal field can be condensed by analytic continuation.

It is interesting to note that an analogous expres
sion to (7) for the Helmholtz equation does not exist 
even for the case of a perfectly symmetric sphere. 
Thus, by virtue of (7), let us postulate the following 
relation in terms of an “ultimate” multipole system for 
the Helmholtz wave equation (1):

k'+'A : p :  (b)h'1'(kR )e(1), imф

dx
, A  + i A

n-m{ д у  dz) \ R

kR (8)

where h®(z) represents the spherical Bessel (Hankel)
function (see [21], Ch. 10) and the coefficients AШ are 
to be determined. First, we recall that both sides of (8) 
satisfy Eq. (1) when expressed in terms of spherical 
coordinates. Next, by using successive partial differen
tiation and the definition of the Hankel function, one 
can show that

which also implies that

dxn
A  + i i
ду dz

2\m/2

ikR
R

•( t\m j m+1 r,m Л 2\m/2 i= / (-1) k R 11 -  b ) e 1Шф
r  m \  (10)n-m ( hH (kR)

dxn R
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Selecting ц — 1 in (10) and denoting PП (ц) =

(l - ц 2) 1 Pnm (ц), implies that along the axis of sym
metry R = x, and thus (8) reduces to

k +1 a : рп (1) ы 1) (kx)(1),

i ( -  1)mkm+1xm d n-m с  ыт (kx)
dxn

(11)

Letting next x — ^  (k ф 0) in (11) and employing the 
following asymptotic expression for the Hankel func
tion [21]:

lim h f (kx) — ( - i )
k x — ^

m+1 e ikx

kx (12)

one finally finds the unknown coefficient in (8) for 
k ф 0:

a m _ i (-1)" _ i (-1)" 2mm ! (n -  m)! 
(n + m)! (13)

Pnm(1)
On the other hand, if we consider the limit k — 0 in 
(11), then one gets

lim hm (kx) — i (2m) ! 1

m+1kx— 0 2mm! (kx)
and following (11) we obtain (for k = 0)

(14)

A m _ i2 "n! 
" (2")!

(15)

It is worth mentioning that (8) reduces to (7) for 
k = 0 by virtue of (14) and (15). Thus, Eqs. (8) and (13) 
provide the sought ultimate singularity expression for 
any external eigensolution of the Helmholtz wave 
equation (1) for k ф  0, expressed in terms of a series of 
multipoles placed at the center of the sphere.

3.2. Prolate Spheroids
Our next task is to extend the above formulation for 

spheroidal coordinates and derive an analogous 
expression to (8) in terms of the appropriate ultimate 
singularity system for a prolate spheroidal shape. 
Towards this goal, let us define R _ Rpq as the distance 
between an arbitrary field point Q (x, y, z) and an 
internal point P (dZ,0,0) where |Z| < 1, which is 
located on the major axis of the spheroid between its
foci, namelyR2 _ (x -  dZ)2 + y 2 + z2. Furthermore, 
using (2) and (11), one gets

Since the left hand side of (16) is a solution of the 
wave equation (1) which decays at infinity, it can be 
expanded in terms of SWF by employing symmetry 
arguments and making use of Eqs. (3), (5) and (6), as

d m+1 [A  + i 1  
' dy dz.

ikR
R

_ E N t Smn ^ %)Smn (c, ̂ Rmn (c, l ) e “ ' ,
n_m mn

where, according to the present definition
l 2\-m/2

Smn (c, Ц)_(1 -Ц ) Smn (c, Ц),

rm* (c, i ) _ ( z 2 -  1)-m/2 r^ '  (c, z)

m (17)

and the coefficients B (  are to be determined. Apply
ing next the orthogonality relation (4) for the angular 
SWF to (16) and (17), leads to

'• ( -  1)m c2m+1 J  hĥ  (1 -  Z2 )m/2 Smn (c, Z) dZ

_ b  nm s  mn(c, ц )и (mn (c, z),

(18)

which results from the following definition of the 
spherical Hankel function [21]:

• / i\m * 2m+1_ i (-1) k hm (kR)
(kR)m

(19)

In order to determine the unknown coefficients B (  in 
(18), we let ц —— 1 so that following (2) x _ d Z, which 
implies that R _ d(Z -  Z). If we further assume that 
Z — ^  and recall that |Z| < 1 and c  _ kd , one gets

lim hm (kR)
l—~ (kR)m

—
( - i ) m+1 e tc (Z -Z )

c ( Z-Z )

Substituting (20) in (18) leads to

B„mSmn<c,1)lirn[zm+1e - “ZRmn (c, l ) ]
1

_ (ic)m J e-cZ (1 -  Z2 )  Smn (c  Z) dZ
-1

(20)

(21)

The integral on the right hand side of (21) can be 
evaluated by manipulation of Eq. (5.3.12) of [20], 
which renders

c m J e-“Z(1 -Z 2 )m/2 Smn (c, Z)d Z
-1

_ 2m+1 m !r mSm„ (c.1)Rmn (c,1),(1)
(22)
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where R® (c,1) = lim(Z2 -1 ) ^RiZ(c,Z).Using
Ẑ i+ v '

next the expression for the radial SWF R® (c, Z) given 
in Eq. (4.1.17) of [20], one can show that

.n+1
lim \Zm+VicZRm:n (c,Z)] ^ - l— . (23)

J c
The unknown coefficient in (17) can then be explicitly 
obtained by substituting (22) and (23) in (21), yielding

B m(c) = (ic)2m+1 m ! ̂  (c,1). (24)

Eq. (24) can be easily verified for the special case of 
m = 0 directly from Eqs. (3) and (17) by noting that
B°(c) = 2icR0n>(c,1). It is finally noted that (24) 
enables us to express any external eigensolution of 
Eq. (1) in the following integral form:

j m+1

в mn(c)Smn (c ,b R i(c ,Z )em
1

= d  | ——и
ydy dz) J R' dZ) j  R  (1 ^  )m/2 ^  (c. 9 * .

(25)

where the coefficients BT(c) are given by (24) and it is 
reminded that R denotes here the distance between 
any field point Q(x, y, z) and an interior point 
R(d Z,0,0).

Eq. (25) is the sought expression for the exterior 
prolate spheroid potential of the Helmholtz equation, 
expressed in terms of an ultimate singularity system 
consisting of a distribution of multipoles of the funda
mental Green’s function e lkR/R over the major axis of
the spheroid. The coefficient R® (c,1) in (24) is given 
explicitly in Eq. (4.6.11) of [20] for the case where the 
integer n -  m is either even or odd. It is not difficult to 
show that when the spheroid degenerates unto a sphere 
(i.e., d  ^  0), Eq. (25) reduces to (8). This can be done 
by noting that as c  ^  0 and Z ^  ^ , one gets R = d Z
and Smn(c,b) ^  p m(b), R(m)n(c, Z) ^  hn\kR). The 
equivalence between (25) and (8) is then obtained by 
making use of (13) and (24) by recalling that

n
R ®(c,1) ^ ------ c--------- for c ^  0.

1 -3 •••(2n + 1)
Consider next a “far-field” point Q (x, y, z), such

( 2 2 2\1/2x + y  + z ) , where

x = pcos0 and y  + iz = psin9e®, is much larger 
compared to the typical size of the scattering body d . 
One can use then a straightforward Taylor expansion 
(assuming that kp @ 1) to express the fundamental 
Green’s function in terms of series of axial multipoles 
lying at the origin, i.e.

eikR = X H )  , feikZ
R ~ £  l! Z dxl l  p

(26)

Substitute (26) in (25) and note (see [20], Eq. (3.1.3a)) 
that the angular SWF can be expanded in terms of
Legendre polynomials Pnm (Z) as

Smn (c, z) = X ' d m  (c) pmm+r (Z), (2 7 )
r=0,1 

~ mn
where the coefficients dr (c) can be determined from 
employing a simple recursion formula (see [7, 19— 
23]). Note that the “prime” summation X ' in (27) is 
taken only over even values of r  when n -  m is even 
and only over odd values of r  when n -  m is odd. The 
integral in the right hand side of (27) can then be ana
lytically evaluated by making use of the following rela
tion [3]:

1
j  z n ( 1  - z 2 )m/2 p m  (Z)d z 
-1 (28)

= 2  m+n+1(m + n) ! (2m + n ) ! g 
(2m + 2n + 1)! nr

Substitution of Eqs. (26)—(28) into (27) finally leads 
(for kp @ 1) to

Bm (c) Smn (c, b) Rmn (c, Z) elmф

= X 'd
l=0,1

m+i+1 2 m+l+1(-1)1 (m + l)! (2m +1)! 
l ! (2m +1 + 1)!

ikp̂

(29)

x dm  (c X (dy+ 1 d z J l  у  J = /™(0, * c )  I  p у
,ikp J

where

fmn (0, ф; c) = 2cX ' ( - 1)1 (2ic )m+l (m + l)! (2m + l )!

l=0,1 l ! (2m +1 +1)! (30)

x dl ( c )(cos0/ (sin0)melmф

represents the far-field dimensionless amplitude 
(directivity) or the so-called “angle distribution fac
tor” of the scattered sound field.

It is also worth mentioning that as k ^  0 (or 
c  ^  0), the Helmholtz equation (1) reduces to the 
Laplace’s equation and thus the kernel in (18) degen
erates into

lim k “  h -dk R l P m ) !_ L ./ 1 n \ m rsm * r * 2m+ 1k̂ 0 (kR) 2 m ! R
(31)
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Furthermore, since Smn (0, p) = Pf  (p) and the 
corresponding external harmonic is simply given by
Pnm (p)Qnm (Z )em , Eq. (18) clearly renders

1 i m/2
(2m)!(-1)md2m+1 r ( l -Z )

2 mm ! r R 2m+1-1
= B nm(0)Pinm(h)<2nm(0 ,

p :  (Zd z (32)

where the orthogonality relation for Legendre’ poly
nomials corresponding to (4) is

1
J Pnm (v)P nm (p)dp 
-1

25 (n + m)!
(2n + 1)(n -  m)!

(33)

Let us again take p ^  1 in (32), which implies that on 
the axis of symmetry (y = z = 0), R = d(Z -  Z). The 
resulting integral in (32) can then be analytically com
puted for Z >> Z as

1 (1 -K2)m/2 
J  рП (Z)d Z
_i (C-K)

= 2 n+1n! [(n + m)!]2 1
= (2n + 1)!(2m)!(n  -  m)!Zn+m+1. 

Following [21] (Ch. 8) we recall that

(34)

pm (1) =

limQm (Z) =

(n + m)! _
2mm!(n -  m)!
( -  1)m 2 nn ! (n + m)! 

(2n + 1)! Z n+m+1

(35)

Finally, substituting (34) and (35) in (32) and letting 
Z ^  —, gives

Bm (0) = 2, (36)
which, by virtue of (25) and for the particular case 
where d  = 1 (i.e. when all distances are normalized 
with respect to half the distance between foci), leads to

Pnm (p Q  (Z)

= l iA + д Г J  (■ - G  P ~<Z> dK (37)

2 1dy dz> ( x - z 2)2+ y 2 + z2

Eq. (37) coincides with the so-called Havelock’s “ulti
mate image spheroid” theorem [5], and here we pro
vide an independent proof of this useful identity, 
which was extensively used in [1, 2].

4. ACOUSTIC SCATTERING 
FROM A SPHEROID NEAR A WALL

of a rigid prolate spheroid placed near a planar (soft or 
hard) wall (see Fig. 1a). The surface of the spheroid is 
given by Z = Z 0 > 1 and h > a denotes the distance of 
its center from the wall. A general “incident” acoustic 
wave field near the spheroid preserving axial symmetry 
(m = 0), can be expressed in terms of SWF as

v  in (p, Z; c, h)

= X An (c,h)S 0n ( c ,p X  (c,Z). (38)
n=0

The coefficients An(c, h) are generally prescribed, 
where following [20] (Eq. (5.3.3)), An(c,h) =
—2— Re{ine"ich} or An(c,h) = —^ I m {ine -ch}, 
^0„(c) 1 1 ” N0„(c) 1
depending if the wall at x = h is “hard” or “soft” for
an incident monochromatic wave-field e‘c(x-h). It is 
important to note that in the sequel we have assumed 
for simplicity that all distances are normalized with 
respect to d  (half the distance between foci). In a sim
ilar manner, if the incident wave-field is generated by 
an acoustic point source (monopole) at P (-xs,0,0) 
lying on the axis of symmetry at a distance xs > 1 from 
the origin, then according to (3) one gets

A„(c,h; хг) = (2c/N)„)Re{iS0„(c,-  1)r 0?(c,x^) (3 9 )

± iS0n (c,1)R03 (c,2h + xs)}.
Here the upper (plus) sign corresponds to “hard” 
(Neumann-type B.C.) wall and the lower (minus) sign 
to a “soft” wall (Dirichlet-type B.C.).

The scattered wave-field under axisymmetric forc
ing can be then simply expressed by the present “ulti
mate” image method (25) as

Vscatt (p, Z; c,h) Cn(c, h) R 0i)(c, Z 0 )
R ote , Z 0 )n=0

1 - ikR'
S0n (c, p) R03) (c, Z)± ^  J V S 0n (c, Z) dZ

Bn(c)-1 R

(40)
x

where R ' = -  2h -Z )2 + y 2 + z2 J 7 and the
upper/lower signs denote cases of hard/soft wall 
respectively. Here R' represents the distance from the 
“image” singularity at (2h + Z, 0,0) and any external 
field point (x, y, z). For the present axisymmetric case, 
one can also apply (3) which renders for |Z| < 1,

icR'
= 2 icX  (N 0n )-1S 0n (c, p)R n

x (c,Z)S0n (c,1)R03n) (c,2h + Z).
(41)

In order to demonstrate the preceding methodol
ogy, we choose a simple axisymmetric configuration

Explicit expressions for the unknown scattering coef
ficients Cn(c, h) in (40) can then be obtained by enforc-
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ing the Neumann boundary conditions on Z =  Z о for 
the total acoustic field у  total =  у  in +  у  scatt by making 
use of the orthogonality properties (4) of the SWF. 
Thus, one finally gets by virtue of (23) the following 
linear system (n = 0, 1, 2, ...) for the coefficients Cn:

An = Cn ± X  CmDm n (c,h), (42)
m =0

where

D m n (C  h ) =
s o„ ( c, i )  Rom ( c , z о)

^  on(c)R on} ( c, i ) Rj  om ( c, z  о)
i

x J S o m  ( c ,  Z) R o n  ( c , 2 h  + Z) d Z.

-1

(43)

The upper dot in (43) denotes differentiation with 
respect to the argument Z (evaluated on Z = Zo). Note 
that the case of a “remote” wall (h ^  ^ ) corresponds 
to the “unbounded” case where Dmn ^  o . Further
more, since the SWF in (43) are tabulated or can be 
computed by using available subroutines, both An and 
matrix Dmn can be considered as prescribed.

Solving the linear system (42) for the coefficients 
Cn (c, h) is rather straightforward for any acoustic 
wavelength k, spheroid geometry Z o and wall distance 
h . For example, rewriting (42) in a matrix form as 
A =  C ±  D C, where D denotes the diagonal symmet
ric matrix of (43), the unknown coefficient vector C 
can be explicitly expressed in terms of the prescribed 
vector A by the following successive matrix operation: 
C = A + D A ± DD A + DDD A.... One should note 
that as h ^  ^ , D ^  o and C = A. An asymptotic 
large-spacing (a/h!  1) approximation can be 
obtained from (43) by recalling [2o] that
R ^ c , z ) ^  (cz)- 1 exp{- i[cz -  n (n +  1) / 2]} as z  ^  «>. 
Thus, by virtue of (22) and (43) one gets the following 
leading far-field explicit expression for the matrix D:

D  (ch) = S om (c,1)So„ (c,1) R om (c, Zo )
D mn( c , h )  (3)

N on( c )  ^m  (c, z o) (44)
x i i m + n+ D e -2>c h ( a / h )  + 0( ^ h) 2,

which can be combined with the above iterative proce
dure to render a formal asymptotic expansion for the 
coefficient A in terms of the small ratio a/h. Fast con
vergence is expected for large wall-spacing. As a final 
remark, we note that such a relatively simple solution 
for the scattering coefficient C can only be made pos
sible by virtue of the newly derived relation (25), which 
also provides analytic expressions for the far-field 
sound scattering and directivity amplitude.

|  V i n
(b)

r

X ------ ►V to ta l

Fig. 1. Definition sketch.

5. ACOUSTIC SCATTERING 
FROM A SPHEROID INSIDE 

A CYLINDRICAL DUCT

Yet another example demonstrating the above 
methodology is sound scattering from a soft spheroid 
placed on the axis of a rigid cylindrical duct of radius 
ro (Fig. 1b) excited by an axisymmetric acoustic wave 
cos(kx), where following [2o] (Eq. (5.3.2))

n

cos(kx) = Son(c,1)Son(c,^(c,Z), (45)
n N on V '

c  = kd.
Making use of the following integral relation for the 
Green’s function of the Helmholtz equation [7] 
involving the modified Bessel function of the second 
kind:

ik Re
R

-  JK o tn/k2 + a 2]cos(ax)da, 
n o

(46)
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enable us to express the total acoustic field within the 
duct in terms of SWF as

¥ total = X ^ - S 0„(c,1) {S 0„(c, p) r 0«(c, Z)
n N  0«

+ C„(c, r0) [ s  0n(c, p R ^ c , Z) + H n(r , X)]} ,
(47)

where Cn(c, r0) denote the unknown amplitude coeffi
cients of the scattering wave field and Hn(r, x ) is a har
monic function satisfying the Laplace’s equation to be 
determined. We use here concurrently both spherical 
(R, p) as well as cylindrical (r, x ) coordinates systems 
preserving axial symmetry.

Employing next the general theorem given in (24), 
(25) together with (46), one gets

H n(r , X ) = - i -  J p k ^+a  KnB„(c)J J a
1 \ rpJ k

2 2 2 + a 2

0 - 1
I  lfoa) (48)

x I 0(ra)S0n(c,Z)cosa(x -  a,

where according to (24) B°(c)  = 2icRсП(с, 1 )  and I n(z) 
is the modified Bessel function of the first kind.

The scattering wave field in (47), (48) satisfies the
Neumann boundary condition d¥ total = 0  on the

dr
cylindrical duct r  = r0.. The unknown coefficient in 
(47) is finally found by imposing the Dirichlet condi
tion ¥  total = 0 on the “soft” Z = Z 0 spheroid. Thus, we 
get the following linear system of equations for the 
coefficients Cn:

R0« (c, Z0)  + Cn(c, r0)R03n)(c, Z0)

+ £  FmnCm(c, r0)  = 0, (49)
m

where according to (48) the matrix Fmn in (49) is 
explicitly given by

1 1

F = 2

nB« (c)N 0n

x I 0 [ (Z

Ш
Vk2 + a 2 K 1 [r0V k2 + a 2 _

0 -1 -1
2 
0

a

1)1/2(1 ■

11(r0a) (50)
p 2)1/2 ]

x S0m(c, Z)cos(apZ0)cos(a^)]dpdZda.

The amplitude of the scattering field for the 
“unbounded” case (no duct) is readily found from
(49) as Cn(c, ~ )  =  - iR$n) (c, Z 0 ) /  R 03n)(c, Z 0 )  since
Fmn ^  0  as r<)/a ^  (infinitely large blockage) and a
correction due to finite blockage can be semi-analyti
cally found by solving the linear system (49). In a sim
ilar manner to the previous case (44), one can also find 
an asymptotic (large-spacing) expression by letting

r0/a @ 1 in (50) which to leading-order in (a/r0) yields
C«(P r0) = Cn(c, «0 + £ ^ m n ^  r0)Cm(c, ̂  where

Fmn(c, r0)

8S 0m(c,1)
B l(c)N 0nR 03n)(c, Z 0) 

sin a p,(1)

Re{i _m}j V k 2 + 02V/2+ a
a

x RZ(c, a ) e~r°(aWk5+a d  a.
a

0
(51)

It is finally noted that such explicit expressions for 
the scattering acoustic coefficients of a spheroidal 
shape lying in a duct can be obtained only by virtue of 
the newly derived integro-differential relation (25) for 
the SWF eigensolutions.
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