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Abstract—We perform a theoretical analysis on nonlinear thickness-stretch free vibration of thin-film acous­
tic wave resonators made from AlN and ZnO. The third-order or cubic nonlinear theory by Tiersten is 
employed. Using Green’s identify, under the usual approximation of neglecting higher time harmonics, a per­
turbation analysis is performed from which the resonator frequency-amplitude relation is obtained. Numer­
ical calculations are made. The relation can be used to determine the linear operating range of these resona­
tors. It can also be used to compare with future experimental results to determine the relevant third- and/or 
fourth-order nonlinear elastic constants.
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1. INTRODUCTION

Piezoelectric crystal resonators are now widely 
used as frequency generators and duplexers in tele­
communication system. They are made from crystals 
with low damping (high Q) and operating in resonant 
conditions. With the increasing demand for the power 
durability in front ends of mobile handsets [1, 2], crys­
tal resonators may be driven into nonlinear range in 
strong vibrations with relatively larger deformations. 
This has a series of implications in various nonlinear 
effects, such as frequency-amplitude dependence, 
anisochronism, higher harmonic generation, and 
intermodulation, etc., which are usually considered 
undesirable. To determine the linear operation range, 
nonlinear analyses on resonator behaviors are neces­
sary. For older crystal resonator materials like quartz, 
nonlinear analyses on resonator near resonances were 
performed in, e.g., [3—6]. In particular, from the fre­
quency-amplitude relation in [4], a fourth-order elas­
tic constant of AT-cut quartz, c6666 in the Voigt (or 
compressed matrix) notation, was obtained which is 
the most useful one among the fourth-order elastic 
constants of quartz. For newer resonator materials like 
AlN and ZnO which are of current interest in making 
thin-film bulk acoustic wave resonators (FBARs) [7], 
while there are extensive results in the literature from 
linear analyses, there seems to be few reports on non­
linear analysis. In addition to the lack of basic under­
standing of nonlinear behaviors in FBARs, the rele­
vant fourth-order nonlinear material constant, c3333, 
seems to be currently unavailable for both AlN and

1 The article is published in the original.

ZnO. For ZnO, even the relevant third-order elastic 
constant, c333, cannot be found. In this paper, based on 
the third-order nonlinear theory by Tiersten [8], we 
perform a theoretical analysis on nonlinear thickness- 
stretch free vibration of thin-film acoustic wave reso­
nators to obtain their basic nonlinear vibration char­
acteristics which have various applications.

2. GOVERNING EQUATIONS
We use the third-order theory for nonlinear 

motions of electroelastic solids valid for weak mechan­
ical nonlinearities. The equations of motion and the 
charge (or Gauss) equation of electrostatics are [9]

KLM , L = p uM , D l , L = ° > (1)
where the Cartesian tensor notion is used. uM  is the 
displacement vector, KLM is the first Piola-Kirchhoff 
stress which is asymmetric in general, and DL is the 
reference or material electric displacement vector. The 
constitutive relations are [8]

KL M  = cL M R SuR, S  + eR L M P-  ,R + 2 cL M R SuK, R uK, S

+ cL K R SuM, K uR, S + 2 cL M R S N JuR, S uN, J

1 - - -  1 - - - (2)
+ 2 cL B R SuM, B uK, R uK, S  + 2cL K R S N JuM, K uR, S uN, J

+ 2 cL M R S N JuR, S uK, N uK, J  + 6 cL M R SN JE FuR, S uN, J 11 E, F ,

DL = eL N K uN, K  -  &L K p , K ,
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where (p is the electric potential; cLMRS, eRLM and 6LK 
are the usual elastic, piezoelectric, and dielectric con­
stants; cLMRSNJ and cLMRSNJEF are the third- and the 
fourth-order elastic constants responsible for nonlin­
ear material behaviors. They are in Cartesian tensor 
notation. Because the linear oscillatory behavior is 
essentially elastic, it is reasonable to assume that the 
nonlinear interaction is purely elastic and that the 
electro-elastic interaction is due to linear piezoelec­
tricity [10]. Since the major nonlinearity in crystal res­
onators is from mechanical origins, the second equa­
tion in Eq. (2) is kept linear. Electrical nonlinearities 
are neglected as an approximation.

Consider the FBAR in Fig. 1. The six-fold axis of 
AlN (or ZnO) is along X3. It is electroded at its two sur­
faces and can be driven into thickness-stretch vibra­
tion by a thickness electric field produced by an 
applied voltage across the electrodes. We are interested 
in free vibration frequencies for which the applied 
voltage will be set to zero. For thickness-stretch 
motions we have

« 1 = «2 = 0, U3 = U(X3, t) ,
~ (3) 

P = P (x3,t) •
The relevant equation of motion, charge equation, 

and constitutive relations take the following form:

.X 3

Traction free, ф = 0, at X3 = h Electrode
У

2 h
Aluminum nitride film Xi

Traction free, ф = 0, at X3 = —h

Fig. 1. Schematic diagram of an FBAR.

where

£,2 = -I-- ®2, c33 = сзз( 1 * + 4 ),C11

k33 —
2

e33 -2
633 c

, £33 -
2

e33
2
33

33 33 633c33 33 1 + £33

(9)

33 33

D3, 3 — 0, (4)

3
+ 2 c333̂  ( u3, 3 )v2 c33 * * *

(5)

c3333)( u3, 3 ) ,

where the Voigt notation for the material constants is 
used. The boundary conditions for traction-free sur­
faces and shorted electrodes are

K33 — 0, p -  0, at x3 -  ±h• (6)

Equation (8) in fact determines a series of resonant 
frequencies. For a plate with h = 1 pm, using the sec­
ond-order material parameters for linear behaviors of 
AlN in [13, 14] and of ZnO in [15, 16], the fundamen­
tal thickness-stretch frequency is found to be

f a r  \ 16.334 X 109 rad/s, AlN, , in4
ю0 — *  ̂ — 1 0 (10)

^ P 19.5471 x  109 rad/s, ZnO.

3. LINEAR SOLUTION
Our analysis of the nonlinear thickness-stretch 

vibration of FBARs will be based on a perturbation 
analysis from the linear solution. For later use, in this 
section summarize the linear solution below. For the 
linear solution we denote the relevant displacement 
and potential by u3 and p . They are governed by (4—6) 
with c333 = 0 and c3333 = 0. For free vibration with 
shorted electrodes, the relevant displacement solu­
tion of symmetric modes can be found from [11] and
[12] as

u3 — A sin £,x3cos ro0t, (7)
where A is an arbitrary constant. Physically it repre­
sents the vibration amplitude or the plate surface dis­
placement. The resonant frequency ю0 is determined 
from the following frequency equation:

-2
h cot £,h — £33, (8)

4. NONLINEAR ANALYSIS

For nonlinear thickness-stretch vibration governed 
by (4)—(6), we begin with

Щ — u2 — 0, u3 — u (x3) cos Ю t, 
p — p (x3) cos Ю t.

(11)

Substituting (11) into (4), and then eliminating p , 
we obtain the following equation for u3 from the first 
equation in(4):

c33u 33cos®t + I - c33 + - c333lu 3u 33( 1 + cos2Юt)

+ 3( - c33 + c333 + 1 c3333 )(u 3)2u 33(3cos®t + cos3Юt) 
4 x2 6 x

(12)

— -рю ucos№t.

ACOUSTICAL PHYSICS Vol. 62 No. 2 2016



162 X IA O JU N  J I et al.

x 1 Q- 5

Displacement amplitude, nm

Fig. 2. Frequency-amplitude relation for AlN, symmetric 
mode. Line a: C3333 = 0; line b: C3333 = C333; line c: C3333 =
10  C333.

x 1 0 - 4

Displacement amplitude, nm

Fig. 3. Frequency-amplitude relation for ZnO, symmetric 
mode. Line a: c3333 = 0; line b: c3333 = c333; line c: c3333 = 
10c333.

We neglect the second and the third time harmon­
ics which is a common approximation in this type of 
analyses [3, 6]. Then (12) becomes

(  3 1 4 ~ ~C33 u ,33 cos ю t +
1 2  C33 + 2C333J u,3u ,33

9 ( 1 1 Y 2
+ 4 1 2 C33 + C333 + 6 C3333J ( u,3) u,33 cos ю t (13)

= -рю u (x3) cos юt.

We then differentiate both sides of (13) with respect 
to time and eliminate the common time-dependent 
factor from every term. This gives

_ - 9 (1 1 V  \2~
C33u,33 + - 1 -C33 + C333 + -C3333 J (u ,3) u,33’ 412 6 J , , (14)

= —рю u(x3).

The linear solution satisfies a similar equation 
which can be obtained from (14) by dropping the non­
linear term, i.e.

C33u , 33 = - рю0 u. (15)

Next we multiply (14) and (15) by u and u, respec­
tively, and subtract the resulting equations from each 
other. This operation is in the same spirit as using 
Green’s identity in the perturbation analysis for fre­
quency shifts in resonators in [17] and it results in

9 (
4 12 C33 + C333 '

2 2 -ю -  ю0) uu =
(16)

33

Finally, we approximate u- by u in (16) and inte­
grate the equation through the plate thickness. This 
leads to

2 2  ю -  ю0

9  (1 C + C + - C  ̂a 2 ? * 4(  h s i n i i h  
_ 1612 C33 + C333 + 6C3333JA ^ 1 h -  Ц J (17)

(, sin2 t,h]
4 h -  ~ i t J

Eq. (17) shows the frequency-amplitude relation 
between ю and A which is characteristic in nonlinear 
vibrations. From (17) we obtain the following expres­
sion for the frequency shift Дю = ю -  ю0 arising from 
small mechanical nonlinearities as

Дю
юо

33+ C333+ - C33336
h -  ып4Щ 

4 J

юор1 h sm ^-h)
_ 2 r J

. (18)

We plot (18) for AlN in Fig. 2 using its ю0 in (10). 
Its third-order elastic constant C333 can be found [18] 
with the value 187 GPa. Its fourth-order elastic con­
stant C3333 seems to be unavailable. Different values of 
C3333 are used in the figure. Clearly, the effect of C3333 is 
significant. Figure 2 can be used to compare with 
experimental results in the future when available to 
determine C3333 in the manner of [4]. When the ampli­
tude A = 2 nm, the relative frequency shift is of the 
order of 10- 5 .

For ZnO, its third-order elastic constant C333 can be 
found [19] with the value —622.4 GPa. We are not able 
to find its relevant fourth-order elastic constant C3333. 
We plot Fig. 3 using different values of C3333. The 
behavior is similar to that in Fig. 2. Figure 3 can be

ACOUSTICAL PHYSICS Vol. 62 No. 2 2016



N O N LIN E A R  T H IC K N E S S -S T R E T C H  V IB R A T IO N  O F T H IN -F IL M 163

x 1 0 - 4

Displacement amplitude, nm

Then the frequency shift Дю = ю -  ю0 arising 
from small mechanical nonlinearities as

Дю
ю0

-99- a 2 t 4f  - c32A  ̂ V2C33
+ c333+ 6 C3333

h -  sin4.£,h/ 
4 \ )

2ю2 p V h + sin2£,h/
~vT)

. (22)

We plot (22) for AlN and ZnO in Fig. 4 and Fig. 5, 
respectively.

By comparing Fig. 2 and Fig. 4, we can find that the 
fundamental anti-symmetric mode has a greater non­
linearity than the fundamental symmetric mode.

5. CONCLUSIONS

Fig. 4. Frequency-amplitude relation for AlN, anti-sym­
metric mode. Line a: C3 3 3 3  = 0; line b: C3 3 3 3  = C3 3 3 ; line c:
c3333 = 1 0  c333.

x 1 0 - 4

Displacement amplitude, nm

Fig. 5. Frequency-amplitude relation for ZnO, anti-sym­
metric mode. Line a: c3333 = 0; line b: c3333 = c333; line c:
c3333 = 1 0  c333.

used to compare with experimental results to deter­
mine the fourth-order elastic constant.

If we take the anti-symmetric modes of vibration 
for which

u3 = A2sin x3cos ю01 (19)

and

^h = nn , n = 0, 1, 2, 3, . . . ,  (20)

the fundamental frequency can be obtained as

ю0
c -^  = I 33.617 x 109 rad/s, AlN, 

p 119.782 x 109 rad/s, ZnO.
(21)

The frequency-amplitude relation for nonlinear 
thickness-stretch vibration of thin-film acoustic wave 
resonators is obtained through a perturbation analysis. 
For an AlN or ZnO resonator with a thickness of 2 pm, 
numerical results show that when the vibration ampli­
tude is 2 nm the relative frequency shift is of the order 
of 10-5. The fundamental anti-symmetric mode has a 
greater nonlinearity than the fundamental symmetric 
mode. The frequency-amplitude relation can be used 
to compare with experimental results for the determi­
nation of the relevant third- and/or fourth-order elas­
tic constants.
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