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Abstract—A physical model of stress-strain dynamics and long-time relaxation (slow time) in structured 
media is proposed. The model is based on the analysis of inter-grain contacts and the resulting surface force 
potential with a barrier. The result is a unified description of the classical acoustic nonlinearity, stress-strain 
hysteresis, and logarithmic relaxation law for sound velocity (and, hence, for the frequency of nonlinear res­
onance in samples of structured materials). Estimates of a characteristic volume of interacting contacts give 
close values for the variety of consolidated materials. For weak (linear) testing waves, the logarithmic relax­
ation occurs if a classical quadratic nonlinearity is added to the stress-strain relation.
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IN TRODU CTIO N

Understanding of mechanisms of acoustic nonli­
nearity in heterogeneous materials has been and 
remains an object of intensive studies (e.g., [1—5]). It 
is known for decades that materials with complex 
structures such as rock and ceramics possess an anom ­
alously strong acoustic nonlinearity. These features are 
of great importance for description of seismic phe­
nom ena including strong earthquakes (e.g. [6, 7]) as 
well as for damage diagnostics in heterogeneous media 
(e.g., [8—10]). Two specific features were registered, 
separately or often together, in most of the experi­
ments: hysteresis in the stress-strain relation and the 
long-time relaxation (slow time). A review of the 
results obtained by different groups of researchers can 
be found in [1, 2]. However, the existing theoretical 
models of the above features are essentially phenom e­
nological; the Preisach-Mayergoyz (PM ) model 
based on the integral action of phenomenological 
(rectangular) hysteretic elements connecting pressure 
(stress) and displacement (strain) is the most widely 
used (see [2] and references therein). Also for slow 
dynamics phenomena only phenomenological models 
were suggested; in particular, a broad spectrum of par­
tial relaxation times in the PM model was considered 
in [2]. N ote that in [11] effects of thermal fluctuations 
on the PM elements were considered using the Arrhe­
nius model to predict frequency dispersion.

Here, we propose a physical model o f a medium in 
which nonlinear elasticity incorporates both the phe­

1 The article is published in the original.

nomena of hysteresis and slow time. This model agrees 
with the majority of experimental data obtained by dif­
ferent research groups [12—18] in what concerns clas­
sical nonlinearity, stress-strain hysteresis and the tran­
sition between them, as well as the slow time relax­
ation, including the existence of threshold in the strain 
level for exciting the latter process.

BACKGROUND

We take into account two types of contact forces 
acting between structural elements (called grains in a 
broad sense), namely, elastic force due to the com ­
pressibility of grains (a generalization of the H ertz- 
Mindlin potential), and the adhesion acting at the 
contacts with variable areas. The relative contribution 
of these forces at tension depends on the contact 
thickness. Classical theory o f adhesion phenomena 
was proposed in [19] and is abbreviated as JKR-theory 
after its authors. As is well-known, the adhesion is 
caused by surface forces of various nature [20] and the 
contact area deformation. Two grains can be detached 
if the load force exceeds a threshold value, which 
depends on the sizes and material properties of grains; 
the reverse process occurs at a different load which 
results in the hysteresis. It was evaluated in [21] where 
a controlling param eter was derived:

P = 'VnlnR 
V E * 2h lJ

1/3
(1)
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where Vmin is the surface density of potential energy 
and hm is the adhesion layer thickness in the equilib­

rium  state, R  =  (R 11 + R -  )-1 is the equivalent radius 
of the contact of two bodies having the radii R1 and R2, 
and E * =  [(1 -  v21)/E 1 + (1 -  v2)/E2]-1, where E 12 
and v12 are the Young moduli and Poisson ratios, 
respectively, of the grains in contact. The grains can be 
considered large and deformable if R  is large such that 
p >  1, and small and stiff in the opposite case. In the 
latter case the attachm ent and detachment processes 
are reversible and there is no hysteresis. If, however, 
p > 0.81, then the JK R hysteresis takes place [21]. The 
adhesion hysteresis has been discussed by many 
authors (see, e.g., [2, 22, 23]). In particular, in [2] the 
van der Waals potential at a contact was discussed in 
detail. For micro-damaged materials, the JKR 
approach was applied in [24] where the resulting adhe­
sion hysteresis in a microcrack is approximated by a 
rectangular loop; the ensemble of such contacts is then 
treated as in the PM  model.

In the theory developed here we consider the fol­
lowing processes: (1) the elastic modulus and small 
quadratic nonlinearity are due to the grains’ material 
compressibility and are defined by the vicinity of the 
m ain potential minimum, (2) as was mentioned, the 
adhesive contact can be broken and then be recovered 
with a different strain value which creates hysteresis, 
and (3) besides the main potential m inim um  defining 
the linear elastic modulus and classical nonlinearity, 
there is at least one shallow, metastable m inim um  of 
the contact potential energy (e.g., [20, 25]) in which 
part of the broken contacts remain trapped after the 
break so that their restoration occurs only due to ther­
mal motion, which needs a prolonged relaxation 
period (slow time). Integrating the contributions of 
individual contacts with different curvature radii 
results in the stress-strain relation which incorporates 
both classical and hysteretic nonlinearities, as well as 
long-time relaxation, within the framework of the 
same contact model. The data confirming that the 
corresponding contact properties are relevant to rock 
and other heterogeneous materials can be found in 
[12-18].

For the adhesive contact force, we use the JK R for­
mula [26]:

F  = 4EE* L  -  V8n y E *a3,

3R2 (2)
5 = <L  -  2 /9nya 

= R  3V 2 E * ’

where a is the contact radius, 5 is the indentation 
depth, and у is the adhesion coefficient, which is equal 
to Vmin specified above if  the adhesion layer thickness 
is not varied (one can easily show this is correct for 
m >  1). The contact strength (bond strength) Fcis pro­
portional to R  and equal to (see Fig. 2 below)

Fc = n yR

3
"2, 
5

"6,

for detaching at 5c, 

for detaching at 5*.
(3)

Note that R  can significantly exceed the mean 
grain radius Rg since the contact area is flattened due 
to the action of high pressure and temperature during 
the material creation [27]. In particular, glass-like 
structures found in the contact area [27] point to very 
smooth surfaces where adhesion effects should be pro­
nounced. The relation between force and displace­
m ent can be found from (2) if the minimal surface 
energy per unit area of a contact is known (y =  Vmin).

For that, however, a more detailed analysis of the 
adhesive forces has to be made. According to 
Israelashvili [20], the adhesion potential can be 
described as follows:

V (h) = A  ~ 
12n h 2 -

1 - h- 6­
+ Q k T  exp ( - к  h ), (4)

where h is the separation distance between the inter­
acting surfaces, A  =  10-20—10-19 J is the Hamacker 
constant, k  =  1.38 x 10-23 J /K  is the Boltzmann con­
stant, T  is absolute temperature, and h0 ~ 0.1 nm  is the 
characteristic atomic size. The second term  in square 
brackets describes strong repulsion of atoms (see [20] 
for details). The factor Q in the last term  of (4) depends 
on the concentration of ions, surface charge density, 
and other factors [20], and к  =  1/’k D, where XD is the 
Debye length.

N ear the main minimum, the second term  in (4) is 
negligible, and the first term  defines the potential m i­
nimum; using the latter in (2), the full potential can be 
found. N ote that in this area the param eter p is large, 
and h is practically unchangeable (stiff adhesion 
layer). U nder the tension load, p decreases up to the 
contact breaking resulting in hysteresis as described 
above. With a still larger separation of grains, the sec­
ond term  in (4) becomes important; it defines the sec­
ond, weak potential minimum. An example of the 
resulting potential is shown in Fig. 1 for quartz grains 
of equal radii Rg =  100 pm  at у =  0.1 J /m 2. The plot 
shown in the inset corresponds to Q =  1.4 x 1018 m -2. 
In this case, there exists a transition into the secondary 
minimum  after the contact is detached. In the second­
ary minimum, p < 1, so that there is no JKR-type hys­
teresis, whereas the slow time relaxation is present.

MACROSCOPIC STRESS-STRAIN HYSTERESIS
Consider now the resulting macroscopic properties 

of the material in terms of the stress-strain depen­
dence. For small strains, the so-called classical elastic­
ity case (e.g., [1, 2]) takes place. N ear the main m ini­
mum, Taylor expansion of the total energy yields U£ ~ 
Umin + a (x  -  x0)2 -  p(x -  x0)3, where x =  5 -  h is the 
total displacement (see Fig. 1) and x0 =  50 -  h0 corre-
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Fig. 1. Contact potential in the vicinity of the main mini­
mum. The positive values of the total displacement corre­
spond to compression, and negative ones—to tension. In 
the inset the potential at larger distances (detached con­
tact) is shown. See details in the text.

sponds to the main equilibrium position when F  =  0 in 
(2). Coefficients a  and p can be found by differentiat­
ing the function of the type shown in Fig. 1. M acro­
scopic values of elasticity moduli and the nonlinear 
param eter can be determined after integrating over the 
contact radii distribution. The corresponding value of 
the macroscopic bulk stiffness modulus can be esti­
mated as several G Pa for quartz grains with an average 
curvature radius R  ~ 1 m m  that corresponds to the flat­
tened contact areas [27]. A typical value of the nonlin­
ear param eter Г2 =  —3 p R /2 a ---- 104 for these grains.
These estimates are in good agreement with numerous 
experimental results for the vibro-acoustic properties 
of rocks (see, e.g., [1, 2, 13]).

With some negative displacement (5c ~ —1.7 in 
Fig. 1), the adhesion contact breaks. This point corre­
sponds to the detaching force (contact strength 
defined above) proportional to R . The detaching point
can be seen in Fig. 2 where the function a  h =  F /4n  R^ 
is plotted versus s =  5/2Rg. Indeed, at some point slow 
m otion along the analytical curve becomes impossible 
(quadratic form ofpotential energy becomes non-pos­
itive [19]) and for a zero viscosity, a fast “jum p” is 
inevitable. With zero friction, this occurs at s =  sc 
where the differential stiffness turns to zero (cf. [22, 
23]), whereas at a relatively large viscosity the fast

motion starts at s =  s* where d a /d s  ^  —<x> and viscos­
ity cannot prevent the detachment. In [24], fast 
motion is approximated by a rectangular loop of a PM 
type. Strictly speaking, it is necessary to consider the 
transient process taking viscosity and mass into 
account, and in general the real m otion occurs 
between the two possible jump points mentioned 
above. In both cases the resulting force turns to zero 
(broken contact) and then the system returns to the 
regular curve. To be definite, we have considered the
jump at s =  s* which corresponds to the high viscosity 
associated with the detaching process (e.g., [25]). 
N ote also that the loops shown in Fig. 2 can be consid­
ered as physical hysteretic elements instead of the phe­
nomenological rectangular PM loops used before [2].

Consider now the macroscopic elastic properties of 
the medium (the slow time effects will be considered 
later in this paper). In general, the stress-strain depen­
dence can be represented as [1, 2]

a  = M s( 1 + r 2s + Г 3s2 + •••) + a h ( s ) ,
+ ю + ю

ah(s) = I I w(R, Z)~h(s, R, Z)d R d Z,
— ю 0

(5)

where a h is the part responsible for the hysteresis. This 
part should be found by integrating over the radii R  of 
contacting grains and the pre-compressed indentation 
depths Z (the latter are defined by the static force 
applied to each individual contact). The contacts of 
large curvature radii are associated with relatively large 
contact areas; these contacts remain near the main 
minimum. They are not involved in the attachm ent— 
detachment processes, but define the linear modulus 
and quadratic (cubic, etc.) nonlinearity. The contacts 
between asperities of smaller curvature radii can be 
attached and detached during cyclic deformation and 
thus are responsible for the hysteretic contribution. In 
the second equation (5), w(R, Z) is the probability
density and a h corresponds to elementary loops. 
Here, the normal distribution is assumed:

- f  R - R 0) 2- 
2 V Zr

w(R,  Z) = -----expw' ’ и rm

x exp 1 fZ -  ^ 2"
(6)

where N is the total number of adhesive contacts,

w 1 + erf Ro

CrV2
is the normalizing

factor, and R0 and Z0 correspond to the mean values.
Figure 3 shows the result of integrating the individ­

ual dependences shown above in Fig. 2. Calculations 
were performed for R0 =  200 pm  and Z0 =  —2 nm  
(static pre-compression). Standard deviation in the 
curvate radius was ZR =  70 pm  and standard deviation 
in Z was varied: =  0 (line marked with circles), Z  =
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Fig. 2. Dependencies between normalized force and dis­
placement according to (2) for quartz grains of Rg =
0.1 mm and contact curvature radius R = 1 mm. Crosses 
correspond to non-positive definite elastic energy [19].

0.5 nm  (line marked with squares), and =  10 nm  
(thick solid line). The latter curves are close to two 
parabolas, similar to most phenomenological models 
considered before (e.g., [1, 2]). From  that, a linear 
dependence of the frequency shift and a quadratic 
dependence of the third harmonic on the strain ampli­

tude, which have been observed in many experiments 
[1, 2], immediately follow.

The hysteresis effects in rocks are commonly 
observed after the strain amplitude exceeds a threshold 
value s* ; according to [16], in sandstones s* ~ (2—5) x 
10-7. The corresponding curvature radius R* can be 
estimated from the bond strength (3) |F* | =  4 n a R2,

where a  =  M s 1* , and M is the experimental value from
[16]. The resulting characteristic value is R* ~ 0.2 pm, 
which corresponds to p ~ 1, as was expected. 
Although the JKR-m odel is, strictly speaking, not 
valid for p ~ 1, this estimation implies that the 
observed transition from a classical to hysteretic non­
linearity is explained by the activation of the contacts 
of relatively small curvature radii for which the adhe­
sion hysteresis prevails, as was predicted by the pro­
posed model.

SLOW-TIME RELAXATION

As was mentioned, at stronger strains with s0 > s* , 
the contacts between small asperities can be broken 
and then recovered; this process is responsible for the 
fast motion hysteresis. However, the smaller asperities 
irreversibly overcome the potential barrier shown on 
the upper panel of Fig. 1 and remain in the second, 
metastable minimum. The depth of the second m ini­
mum, Vmin is m uch smaller than that of the primary 
one, and the corresponding equilibrium adhesion 
layer thickness hm in (1) becomes larger. In this case, 
p < 1, so that the grains are not significantly deformed, 
whereas the adhesion layer thickness is varied without 
the hysteresis. These contacts return to the initial 
(main) state of equilibrium only due to the thermal

Materials studied were: (1) pearlite/graphite metal (gray iron), (2) alumina ceramic, (3) quartzite, (4) pyrex glass with 
cracks, (5) marble, (6) perovskite ceramic, (7) berea sandstone in air dry conditions, (8) berea sandstone in vacuum, 
(9) fontainebleau sandstone, (10) soil, (11) dry glass balls package, for brevity only scales are printed; small value corre­
sponds to confining pressure 35 kPa, while the large one to 8 kPa. Data (1)—(6) are from [15], (7)—(9) from [14, 12], (10) 
from [17], and (11) from [18]

Material M, GPa Л/M, x10-5 Л, MPa V*, 10-27 m3 d = 3 JV * , nm

(1) 11.4 2.6—3.3 0.3-0.38 13-16 2.4-2.5
(2) 95 1.5 1.7 1.5 1.2
(3) 34 2.7 0.94 4.2 1.6
(4) 49.3 0.79 0.4 10 2.2
(5) 41.6 1.8 0.8 5.3 1.7
(6) 11.5 9.5 1.1 3.6 1.5
(7) 7.8 0.76 0.06 71 4.1
(8) 7.8 4.3 0.34 13 2.3
(9) 1.3 79 1 2.6 1.4

(10) 0.03 900 0.3 13 2.4
(11) - - - - 6 - '

ACOUSTICAL PHYSICS Vol. 60 No. 5 2014



A UNIFIED MODEL OF HYSTERESIS AND LONG-TIME RELAXATION 559

fluctuations; they are responsible for the slow time 
relaxation. To describe this process, we use an analogy 
with chemical reactions [28] and magnetic domain 
orientation [29, 30]. Namely, it is supposed that the 
strain recovery rate is governed by the Arrhenius law,

6 = В  exp ( -  Ц )  , (7)

where В  is a constant, AG is the Gibbs potential which 
has the order of the potential barrier in Fig. 1, k  is the 
Boltzmann constant, and T  is absolute temperature. It 
is possible to show that AG >  k T  for all the cases con­
sidered. In this case for a slow process with a small 
temperature change, the thermodynamic relation 
—dG  =  V*da + S d T ~  V*da, where V* is “activation” 
volume associated with the relaxation process [29] and 
S  is the entropy, is valid. As a result, Eq. (7) yields [17]

M d es + Л  —- = d a , (8)
6 -

where subscript “s” is used for the slow processes 
occurring in excited states close to the metastable 
equilibrium, and Л =  kT/V*.

If after the action of the load it is switched off at 
some moment t =  0 so that a (t  > 0) =  0, then the time 
dependence of the strain in (8) is logarithmic [17]:

6- = 6 ? - ' - M ”  ( t 0)  , (9)

where s-0) is the initial strain and t0 = Л . The ini­
- 0 M s f

tial strain value can be estimated as s-0) =  hm/2 R  ~ 10-5, 
where hm ~ 2—5 nm  corresponds to the adhesion layer 
thickness at the second minimum  (Fig. 1). The coeffi­
cient of the logarithm is determined from available 
experimental data (e.g., [12, 14, 15, 17, 18]). From 
there, the “activation” volume was then estimated as 
V* =  kT/Л . The corresponding linear scale is esti­
mated as d  =  (V*)1/3 and should be compatible with hm 
for the second m inim um  (Fig. 1).

Table shows the main parameters of various m ate­
rials tested in literature and the corresponding values 
of V* and d  calculated from the above relations. It is 
remarkable that very different materials are character­
ized by close “activation” scales, 1—4 nm. This sug­
gests that the slow time phenom enon has a common 
cause in all these materials. Note that this scale is 
compatible with the second m inim um ’s position in 
Fig. 1 and is of the order of a distance at which the sur­
face force (4) effectively acts. N ote also that the data in 
Table show the trend of increase in the activation scale 
with the structural/chemical inhomogeneity (materi­
als 1, 4, 7, 8, and 10). Data no. 11 in table correspond 
to relaxation of bulk and shear elastic modulus of the 
air-dry glass balls package. Both values were found 
relaxed with the same rate and with the tendency of 
scale decrease with confining pressure increase. The

Fig. 3. Integral stress-strain curves plotted for a cyclic
deformation amplitude S0 = 10-5.

characteristic d-values are greater because the inter­
grain forces are less in unconsolidated granular 
medium.

It is well-known [14] that upon relaxation the 
material returns to the same macroscopic state in 
which it was before the excitation at a high strain level, 
and this process is repeatable. This means that no irre­
versible changes takes place, as should be expected 
according to the model considered here. Experimental 
data [14] imply that relaxation phenomena occur 
when the excitation strain level exceeds 6* value that 
corresponds to the transition from a classical to hys- 
teretic nonlinearity. The latter was associated above 
with the asperities for which the param eter p is large 
enough to provide hysteresis in the stress-strain 
dependence and the contacts attachm ent-detach­
ment.

Reversibility of the relaxation process seems natu­
ral because only a small volumetric density of con­
tacts, ф <§ 1, can reach the metastable state. Strong 
bonds which are responsible for linear elasticity are 
not broken at all; correspondingly, the observed fre­
quency shift in the fast m otion hysteresis is only about 
1%. The bulk of the material is not destroyed, but only 
weakly perturbed. The small discrepancy is eliminated 
in the course of relaxation due to thermal fluctuations, 
as discussed below.

As follows from most experiments (e.g., [14, 15]), 
the velocity and, correspondingly, resonant frequency 
of a weak probe wave propagating against the back-

CTh/max(|oh|)
0.50 г

0.25

0.25

0.50 -

0.75

1.00
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ground of the main state slowly relaxing according to
(9) also return logarithmically to their initial values. 
This readily follows from the expression for sound 
velocity which includes quadratic nonlinearity:

f  = f + И Л ь  ( t + t ° 
f 0 f 0 2 M 0 '  ?0 '

(10)

w h e re f  is the unperturbed resonant frequency, A f < 0

is the initial frequency shift, and Г2 < 0 is the effective 
quadratic nonlinearity coefficient averaged over all 
excited states. As follows from the above, Г2 ~ Г2ф; 
indeed, the averaged relaxing strain is of the order of 
фбл. This implies that the slope of the logarithmic 
relaxation function should be proportional to ф, as is 
seen from (10).

The strength of the grain contacts is proportional to 
the curvature radii. Therefore, it is reasonable to pre­
sume that the population density ф in the excited states 
is proportional to the excitation strain amplitude. 
Indeed, the logarithmic slope was observed to be li­
nearly dependent on the excitation strain amplitude in
[14]. Evidently, if  s0 < 6*, then no attachm ent- 
detachment process is activated, i.e., ф =  0 and there­
fore no long-time relaxation occurs. These simple 
considerations can explain the bulk of observations 
(e.g., [2, 14, 15]) and provide an additional validation 
of the model proposed here.

RESULTS AND DISCUSSION
In this paper, apparently for the first time, a physi­

cal model of the nonlinear properties of structured 
media including geophysical materials, is proposed. It 
describes the classical elasticity, “fast” hysteresis, and 
the slow time relaxation within the framework of a 
unified description. The model is based on the contact 
potential containing a metastable minimum  along 
with the m ain equilibrium, both occurring due to the 
contact adhesion forces together with the elastic forces 
acting between the grains. The model agrees with the 
m ain of experimental facts regarding the nonlinear 
resonance in bars and the slow time relaxation of a 
probe wave after a strong impact. A characteristic scale 
related to the relaxation process has been evaluated 
based on the experimental data; it is shown to amount 
to 1—4 nm  for a variety of materials. N ote that in our 
model, slow time behavior follows from the only fast of 
the existence of a secondary energy minimum, inde­
pendently of any specific interaction mechanism 
causing this minimum.

It is proper to briefly outline other models known 
in the literature. In a series of papers (e.g., [31]) the 
hysteresis phenom enon is explained using a model 
accounting for the dry friction of rough surfaces in 
open cracks. Although the friction can play a signifi­
cant role, the transition from a classical to hysteretic 
nonlinearity as well as the slow time phenom enon do

not follow from the model. The slow time phenom e­
non was qualitatively described by the same authors in 
[32] within the framework of a model similar to [31]. 
It was assumed [32] that “due to thermally induced 
creep motion, the internal roughness may slowly vary 
in time. ” This assumption agrees with that proposed in 
[14]; however, the well-known fact of repeatability of 
the excitation-relaxation cycle pointed in [14] has not 
been explained.

Apparently, the first physical model of the slow­
time relaxation phenom enon was described in [14]. 
The authors considered the excited state as that caused 
by the frictional slip during the fast m otion at a m od­
erate strain level. The relaxation is considered as 
recovery of the area of the microscopic contact due to 
the formation of bonds impeded by a smooth spectrum 
of energy barriers. Also, the question regarding repeat­
ability of the fast-slow motion cycle remains. N one­
theless, this model leads to the relaxation with a loga­
rithmic time dependence of sound velocity, and some 
results of[14] are still used in recent publications (e.g., 
[32]). Thus, let us compare the model proposed in the 
paper presented with [14]. The characteristic value of 
energy in the spectrum of energy barriers was esti­
mated there as E char ~ 1.6 x 10-7 pJ. In our estimates, 
the barrier height (Fig. 1, inset) is about 10-5—10-4 pJ 
for a relatively large curvature radius, R  ~ 50 nm, and 
the energy depends linearly on R. The value E char in 
[14] corresponds to R  ~ 50 nm  when the param eter p 
in (1) is small. Within the framework of the proposed 
theory, these contacts are not responsible for the adhe­
sion hysteresis, whereas they can be associated with 
the slow time relaxation phenomena activated during 
the fast motion. Thus, the consideration of adhesive 
contact forces and compressibility of contact grains 
performed above allows describing both hysteresis and 
slow time effects uniformly based on prevalence of one 
over another at different stages of loading.
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