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Abstract— We propose a modification ofS-transform (ST)bychanging the kernelof Fourier transform (FT)

with that offractional Fourier transform (FRFT)and callitgeneralized fractional ST (CiIFST). The FRFT is
ageneralization of FT and it has been shown more useful than the FT for signals with changing frequencies

such as chirp signals. The proposed CIFST is applied to analyze and classify different environmental back-
ground sound mixed with speech signal in the form o fadditive noise. The simulation results demonstrate that
Euclidean distance between the feature vectors computed from generalized fractional ST corresponding to
different background noise is increased ascompared to ST for the same set offeature vectors and signals.
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. INTRODUCTION

Environmental sound recognition is a basic audio
signal processing task having im portantapplications in
navigation, assistive robotics and other mobile device -
The audio based scene denotes a loca-

lik e

based services.

tion with different acoustic characteristics train,

airport, traffic area or quiet hallway. There have been

recent trends in finding solutions to provide hearing

inform ation for mobile robots to enhance their con -

In the context

lik e

text awareness with audio inform ation.

aware applications, a mobile device cell-

e.g.,

phone can autom atically change the notification

mode based on the knowledge ofuser's surroundings.

It can switch to the silent mode in a meditation room,

theater or lecture room or to provide inform ation

regarding location ofuser. Discrim ination ofthc back-

ground noise signals mixed with speech signal s

required for providing inform ation regarding the phys-
ical location ofperson and several methodologies for
in 11— 71.These methods utilize

(STFT),

the same are discussed

the short-tim e Fourier transform wavelet

(WT) and other time—- frequency

transform represen-

tations o f signals such as Wigner distribution (W D),

the ambiguity function and the spectrogram, etc.

However, the WD ofanon-stationary multi-com po -

nent signal undesirable cross-terms. The

STFT

has many

is also known to have poor frequency resolution

1The article is published in the original.

Fourier transform

6

additive noise. Euclidean distance, environmental

in low frequency range and poor time resolution in

high frequency range. Both ofthese shortcomings are

due to fixed width ofthe STFT window. The W T does

not provide phase inform ation of local spectrum as
their entire waveform translates in time without
change in shape.

The S-transform (ST), which is also a tim e -fre -
guency representation ofthe signal, localizes the real
and imaginary spectrum |8, 9|. It combines the fea-
tures of WT and STFT in the time- frequency repre-
sentations o f the signal. Several important modifica -
tions have already been made in it by changing the
properties and width of Gaussian window used in it

110—- 121. To provide the user a specified time and fre -

guency resolution in the time-frequency plane, the

width of Gaussian window (which is proportional to
inverse frequency (/) in original ST) isreplaced by (//y)
whereyisareal number 11()]. It means that one stan-
dard deviation of Gaussian window contains y wave-
lengths ofthe complex sinusoid at any frequency. To
resolution, the method ofbi-G aus-
|11]. The

changing

obtain better time

sian window is introduced in problem of

resolving waveforms with frequency is

addressed by introducing acomplex Gaussian window
[12]. N

with a custom built complex phase function

inform ation from seis-

the

method is discussed to extract

mic noise 1131 /1 method ofestimating iIsotropic

level with a horizontal in the presence

sea noise array

of uncorrelated interference and interference with a
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complex spatial structure is proposed and experimen-

tally tested 114 1.

In this paper, we propose a modification of ST by
changing the kernel of Fourier transform (FT) with
that offractional Fouriertransform (FRFT)and call it
generalized fractional ST (GFST). The FRFT is a
generalization of FT and it has been shown more use-
fill than the FT for signals with changing frequencies
such as chirp signals 11 5-19|. The proposed GFST is
applied to analyze and classify different environm en -
tal background sound mixed with speech signal in the
form ofadditive noise. The simulation results dem on -
strate that Euclidean distance between the feature vec-
tors computed from GFST corresponding to different
background noise is increased as compared to ST for

the same set of feature vectors and signals.

2. GFST

The ST which gives usthe time frequency represen-
tation ofa signal combines the features of STFT and

WT |X,9]. The ST ofsignalsit) is expressed as |9]
yi

nt . (r,./;a) = J.v(ID)M(/ = x)exp(-j2nfi)di, (1)

-

where g(I) is a Gaussian window function satisfying

the condition

and a isthe width ofthe Gaussian window. The width
ofthe window is made function o ffrequency cr(/) and

if it istaken as inverse ofthe frequency.

then (1)simplifies to

STS5{xJ,a,) = M Js(/)expl

J 2 n (3)
—.

X cxp(-j2nft)dt.

Wc propose a modification in (3) by replacing the
kernel of FT by the kernel of FRFT. Thus, the pro-

posed GFST isdefined as

ST (e ae.y = i5(Ng(/-X)AF, (], uyar, (4)
—7a
m is the FRFT domain parameter at an angle a from

the tim e axis.
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where a is a real number. 0 < |</|< 2. The width o f the
G aussian window a, is made function of it and it is

taken as

The GFST which isformed by substituting the ker-

nelof FRFT is merely a rotated version of ST:

s T “(xJ) = s7' (tcosex-/sina, xsina +/cosa)

The kernel ofthe FRFT'is expressed by 1151

% 2
L1 (6)

(.(/1"+ /")cota) ,
X exp [/ - lexppl{jutcoseca )

ifa is nota multiple ofa4a.

2. /. Interpretation o fG FST Equation

The rotation type relationship between both pairs

ofaxes is

cosa - sin a /1l

sin a cos a

The GFST isthe Gaussian windowed signal which is

decomposed in terms of chirp”™ basis functions.
These basis functions only differ by a time shift and by

a phase factorthat depends on n for different values o f
it 117
K Jt.u) =

exp(-/-y tana)k, (t itseca, 0).

Another convenient way oflooking at the integral in

(4) isto define

m(Nn vy = s(HAw(/, n). (7)

Substituting (7) in (4). we get

S T “(i, u, 0,) = | m(t, u)g(t-T)d:!

= m (t,

JYOE(/. a,,).

where ® denote the symbol forconvolution. If FRFT

ofs (/).
SJu,-) =

|.v(/)A'1(/, uj)dt,

and FRFT ofGaussian window g(t4a,;).
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Fig. I. Representation of// and v axesatan angle u.
c(</l,,I,o0,) = Js(/.cr,)yK J i, niell
expiy'f

A
cosa + j--—---- -sin a
2 neT
| + lan a - j[ - 2qaa; ltana
// T a n
X exp
: | T
2a, l + — — tan (X
i 2 4
A4 0,,

then S7V (x,//l. a,) may he expressed as

s 1 (T, 1. a ) = J{[$(n,)®6<i/, - (/)16'(«/,. N 0, )!
X K .J 1, Ui)dui%

where [s(u;)® 6(//,- [//)] isthe forward translation of

5(i//)onil.

It can be shown using the properties ofkernel ofthe
FRFT 1171

57A(x,//) = .V7:(t./) fora = 5.

The GFST transform combines the Gaussian win -

dow function which

is slowly varying envelope and

localizes in time, and the FRFT kernel which selects

the tim e—- frequency being localized on new axis, it. It

is the that is

time— frequency localizing Gaussian
shifted or translated on new axis, // at an angle a. The
G FST produces alocalized tim e— frequency represen-

tation.

2.2 Recovery o fO riginal Signal

To recover the original signal lrom GFST, we take

the average of(4) to obtain

t t

J.S'7"(T - /. /. CTydx = J JV(/)g(x -t)K jl, u)dult

I

J.V(DHA',(/, »)</] Jtf(T - t)ydx.

Using (2) we obtain

INST7“(1 - [, n. aw)(lx = Sju),

—t
where su(u) is FRPT o fs{t).

The signal .*(/) can be recovered from su(u) using

X

s(1)y = j\s@/nHIcC ,(/, uydu.

-

The generalized fractional ST is expected to per-
form better for signals with changing frequency with
regard to

their time—- frequency representation. The

GFST

features are quite discriminating

merits of ST over FT are enhanced for
against FRFT. The
for different values ofangle a in GFST whereas in ST
the flexibility in choosing the value ofangle is absent.
Considering the characteristic of noisy speech signal
as highly non-stationary, the G FST have different axes
(as per Fig. 1) in the time- frequency plane and are
segmented by the Gaussian window o fvarying width
as per equation (6). The features extracted from the
segmented axis atspecificangle in the tim e—- frequency
plane are found more discriminating (max ata = 0.5)
ascompared to simple FR FT based features. The work
on FRFT baseddiscriminating features is presented by

the author in [2()].

3. kK-NN CLASSIFIER

The k-N N classifier 12 11sim ply places the different
points (feature vectors) ofthe training set in the fea-
ture space, and the decision of classification

ofth e

iIs done
according to “voting” nearest neighbors to a
point under test. The voting is done by picking the
A points nearestto the testpoint, and the selected class
picked. The

between can be measured with different metrics, the

is the class that is most often distance

most often used are the well-known Euclidean dis-
tance and the Mahalanobis distance. In our method -
ologies. the distance is measured using the M ahalano-

bis metric |22].

The square Mahalanobis distance between the fea-

ture vectors 1 v|and Fv2isgiven by

d2 = (FV ,-FV 2)tl.-\FV x-F V 2).

A C O U STICA AL P HY S1CS Vol. 60 N o. 4 2014
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Amplitude-time plotsofnoist speech signals

w ith utterance "He knew the skill o fthe great young actress”
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noise, (e) restaurant noise.

Plots of the clean and speech signals with background

where | is the covariance matrix o fthe training data.
Mere, the algorithm used relies on the assum ption that
the covariance m atrix is the same for all classes, which
Is not true fora majority ofthe practical cases. There
are several advantages in using the Mahalanobis met-
ric instead ofthe Euclidean metric which are as fol-

lows:

— the Mahalanobis metric autom atically scales the

coordinate axes o fthe feature space;

— itdecorrelates the different features to the whole
set oftraining samples as one entity;

— the Mahalanobis metric is able to accommodate

curved aswellaslineardecision boundaries.

4. RESULTS AND ANALYSIS

The proposed generalized fractional ST is applied
back-

ground noise sources mixed with speech signals. The

to discriminate the different environmental

signals used in the simulations are taken from a

NOIZEUS Speech Database.

background noise sources, i.e., train, airport, car and

Here only four types of

restaurant mixed with human speech signals are taken

into consideration. Figure 2shows plots ofsome o fthe

clean and noisy speech signals at sampling rate
8000 samples persecond.

Figures 3 and 4 show the pseudo-color plots
(checker-board plots) of ST corresponding to back-

A C O U STICAL PHY S1C S Nfol. 6 0 N o. 4 2014

noise: (a) clean speech, (b) train noise. <c) airport noise. <d) car

ground train noise in the presence of speech utter-

ances. It is in the form ofcontinuous regions, hence
little cumbersome to find feature vectors fordiscrim i-

nation from other noise sources.

In Fig. 4, the rotation of axis by 0.3n (at FRFT

order = 0.6) makes the energy scattered as compared

to Fig. 3, hence time and frequency localized points

contain more inform ation regarding the characteris-

tics o fsignalascompared to simple ST. The following

features are extracted from the discrete version of
GFST and ST ofcorresponding noisy speech signals.
features are extracted in

These terms of frequency

(row) value corresponding to time-frame (column)

values (from maximum and up to 90% of max value)

foreach colum n:

— maximum frequency value per time-fram e;

— minimum frequency value pertime-frame;

— mean frequency value pertime-frame;

— standard deviation o ffrequency values per tim e -

frame.

These feature values are taken as average o f first

100 frames o fthe signal. The frame period ischosen as
50 ms. The setoffour features as mentioned for train
and airportbackground noisy speech signals with SNR
5 dB to ST and GFST (for a = 0.5)
m atrices are shown in Figs. 5 and 6 respectively with

first 100

corresponding

respect to time-frame for the time-frames.

| he utterances used corresponding to the reported
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S-transform representation ofbackground train noise
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Hr.3. S-translorm representation of train noise.
CIiFST (at FRFT order= 0.6)
representation ofbackground train noise
Time-index
Fig.4. GFST (at FRFT order 0.6) representation oftrain noise.
plots are “He knew the skill of the great young with respect to time-frame for the first 100 time-
actress.” The same features for train and restaurant frames.

background noisy speech signals with SNR 5dB cor- The Euclidean distance between feature vectors of

responding to ST and GFST (fora = 0.5) matrices for different pairs of background noise sources is plotted

same utterancesare shown in Figs. 7and 8 respectively on Fig. 9 with respect to different values of fractional

ACOUSTICAL. PHYSICS Vol. 60 No. 4 2014
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| ig. 6. Plot of feature values for train and airport background noisv speech signals corresponding lo GSIT ata 0.5 (/ train

noise, 2 airport noise).

order/fractional power, aand ST. The fractional power

is already defined 1in section 2, equation (5). The types of noise sources as mentioned. In
Euclidean distance increases with maximum value at
fractional power of GFST, a = 0.5, which is much

higher as compared to the value corresponding to ST.
It shows that the separation between the feature vec-
two different noise sources

tors corresponding to

makes the classifier convenient and unambiguous to

take the decision ofclassification.

The classification accuracy using k-N N classifier is
also (in case of ST) to 85% (in
case ofG SIT witha = 0.5)fordiscrimination between

increased from 68%

some pairsofnoise sources whose results are shown in
the plot. This trend has been observed and verified in

ACOUSTICAL PHYSICS Vol. 60 No. 4 2014

the 40 samples of the noisy speech signals for all four
the case of
car restaurant noise pair, the results are observed bet-
ter for(i= 0.2.This isthe beauty ofthe method. A the-

orctical model cannot be presented for choosing the

suitable value ofga fordiscrimination ofdifferent back-

this decision

noise world, as

ground signals in the

isabsolutely based on the simulation outcomes on

MatLab platform.

The Euclidean distance between feature vectors of
different pairs of background noise sources is plotted
10 for different SNR values. The
Euclidean distance at a = 0.5 as SNR is improved

(Eig. 10) from 5to 10 dB. As SN R degrades, the effect

in Tig. reduction of



472 JHAN'WAR cl al.

KUW) 1 NOO
/
V, 600
B \ Iz
6 - 500 d- 40»
rj
5
/ /
0 50 100 50 100
Time-frame index Time-frame index
X00 300
/ «
= 600 I
fl
g- 400
n S
S 200 /
U
0 50 100 0 50 100
Time-frame index Time-frame index

Hr. 7. Plot of feature values of train and restaurant background noisy speech signals corresponding to ST (/ train noise. 2
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rig. 8. Plot of feature values for train and restaurant background noisy speech signalscorrespondingto GSFT ata 0.5 (/ train
noise. 2 restaurant noise).
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lic. 9. Multiple plots of Euclidean distance between fea-
ture vectors ol dill'erenl pairs of background noise sources
vs. fractional power.

Euclidean distance

Fractional power

Fig. FO. Multiple plotsof Euclidean distance between fea-
ture vectorsofdilTerent pairsofbackground noise sources
corresponding to SNR 5and 10 d B vs. fractional power.

of background noise enhances over the speech signal
and itisprominent ata = 0.5. For lower level ofback-
ground noise ascompared to speech content, the dis-
crimination ofdilTerent noise sources isconvenient for
classifiers at other fractional powers. The technique of
discriminating noise sources performs better in
smaller background noise also, whereas in original ST
the results are independent of SNR. It proves through
the experiment that the fractional power isone ofthe
key parameterof GFST forsuccess ofclassification in

dilTerent cases which isabsent in case of ST.

5. CONCLUSIONS

Generalized fractional ST based features are

proved to be an effective tool to discriminate the back-
ground noise sources mixed with human speech sig-
nals. More features may be computed to enhance the

number of noise sources for discrimination purpose.

ACOUSTICAL PHYSICS \bl. 60 No. 4 2014
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Thistechnique may be useful in finding the location of
speaker on the basis of recognizing background after

analyzing the recorded signals. As shown in results,

this methodology ismore effective in noisy speech sig-
nals with lower SNR .
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