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Abstract— This paper presents a review study on sonic crystal, their development and present status. The 
paper also focuses on some of the applications of sonic crystal and numerical methods to study these crystals. 
Sonic crystals are periodic arrangement of scatterers, whose interaction with acoustic waves leads to the for­
mation of band gap. Band gap are regions of frequencies where the sound propagation is significantly 
restricted from the sonic crystal. This property is used in many applications such as sound barrier, frequency 
filter, acoustic imaging etc. The paper presents a review of all these applications. Further the paper presents 
some of the numerical methods used to calculate the band gap formation in sonic crystal.
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Sonic crystals are artificial structures made by the 
periodic arrangement of scatterers in a square or trian­
gular lattice configuration. The scatterers are sound 
hard (i.e., having a high acoustic impedance) with 
respect to the medium in which they are placed. For 
example, acrylic cylinders in air or steel plates in water 
are some examples of such sonic crystals. A sonic crys­
tal with scatterers as cylinders arranged periodically is 
called a 2-D  sonic crystal (Fig. 1). When the scatterers 
are placed in a 1-D periodic arrangement, such as 
steel plates placed periodically in water, it is known as 
a 1-D sonic crystal. When the scatterers such as 
spheres are placed in a 3-D  periodic arrangement 
(for example, simple cubic), it is known as 3-D  sonic 
crystal.

1. PER IO D IC STRUCTURES AND BAND GAPS

Due to the periodic arrangement of scatterers, 
sonic crystals have a unique property of selective 
sound attenuation in specific range of frequencies. 
This range of frequencies is known as the band gap, 
and it is found that sound propagation is significantly 
reduced in this band gap region [1]. The reason for 
such sound attenuation is due to the destructive inter­
ference of waves in the band of frequencies. It is also 
shown numerically by author [2] that the propagating 
wave has an evanescent behavior (decaying amplitude) 
which causes the sound attenuation to take place in 
the band gap region.

1 The article is published in the original.

Periodic structures, in general, can significantly 
alter the propagation ofwave through them. The earli­
est realization of this principle was at the level of 
atomic structure in metals and semiconductors. 
According to quantum  physics [3], atoms are arranged 
in a periodic lattice in a solid. When an electron (wave) 
passes through the crystal structure, it experiences a 
periodic variation in potential energy caused by the 
positive core of metal ions. The solution of 
Schrodinger equation over such a periodic arrange­
m ent is obtained by the Bloch theorem  [3], or the Flo- 
quet theorem  for 1-D case [4]. The wave propagating 
in such periodic structure is given as

y (  r) = u ( r) etkr, ( 1)
where y (r) is the Bloch function representing the elec­
tron wave function and u (r) is a periodic function with 
periodicity of the lattice.

The solution of the Bloch wave for a periodic 
potential leads to the formation of bands of allowed 
and forbidden energy regions. The allowed energy 
regions are known as the conduction band and valence 
band, whereas the forbidden band of energies where 
there is no solution for the Bloch wave is known as the 
band gap. These band gaps are quite comm on in semi­
conductor materials and they form the basis of all 
m odern electronic devices.

Another application of the same principle of wave 
interacting with periodic structures is in the field of 
photonic crystals [5, 6]. W hen an electromagnetic 
wave (light wave) passes through a periodic arrange­
m ent of dielectric material with different dielectric
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Fig. 1. Different types of sonic crystals. (a) 1-D sonic crystal consisting of plates arranged periodically; (b) 2-D sonic crystal with 
cylinders arranged on a square lattice; (c) 3-D sonic crystal consisting of periodic arrangement of sphere in simple cubic arrange­
ment.

constants, photonic band gaps are formed. Therefore, 
there are certain frequencies of light that are allowed 
to pass through the structure and certain frequencies 
are restricted. The formation of band gaps allows the 
design of optical materials to control and manipulate 
the flow of light. One such practical application is 
the design of photonic crystal fiber [7], which uses 
microscale photonic crystals to confine and guide 
light.

The same principle is being extended and applied 
to the acoustic wave passing through the periodic 
structures. When an acoustic wave interacts with a 
periodic structure it forms bands of frequencies 
(Figs. 1 , 2), where certain frequencies are allowed to 
pass through the structure without m uch attenuation, 
while certain frequencies are attenuated. This leads to 
significant sound attenuation in the frequency band. 
The band gap is represented by the shaded region in 
Fig. 2, where there is no solution of the frequency for 
a given wavenumber k. The band gap that extends for 
all directions of wave propagation is known as a com ­
plete band gap.

The present work is based upon assuming a planar 
wavefront for the propagating acoustic wave. However,

Frequency, kHz

Fig. 2. An example of band gaps for a sonic crystal repre­
sented by the shaded region [2].

it is also shown that circular wavefront of wave can be 
considered [8] to give more accurate predictions.

One major difference between the periodic struc­
ture in the photonic crystal and in the sonic crystal is 
the size of the scatterers. For periodic structures to 
interact with waves, the scatterer dimension and the 
spacing between them  should be of the order of wave­
length of propagating wave [3]. In a photonic crystal 
the size of scatterers is of the order of microns [9], 
which is also the order of magnitude of the wavelength 
of electromagnetic wave. So a photonic crystal of the 
order of few millimeters has thousands of periodic 
units arranged in a periodic manner. An ideal or infi­
nite periodic structure should have repeating units 
which extends till infinity. The band gap is actually 
obtained for an infinite structure. A photonic crystal 
having thousands of periodic units resembles an infi­
nite periodic structure, and therefore in the band gap 
region there is no propagation of electromagnetic 
wave. For a sound wave in the audible region 
(20 Hz—20 kHz), the wavelength is of the order of few 
centimeters (1700—1.7 cm). Therefore, a sonic crystal 
due to practical considerations consists of few (3—10) 
scatterers arranged periodically and there is a signifi­
cant sound attenuation in the band gap region. 
Authors have developed numerical methods [10] to 
obtain the band gap and also to obtain sound attenua­
tion through a finite size of sonic crystal.

The first experimental measurement of sound 
attenuation by the sonic crystal was reported by Mar- 
tinez-Sala et al. [1] in 1995. The sonic crystal was an 
artistic creation by Eusebio Sempere in Madrid con­
sisting of a periodic array of steel cylinders as shown in 
Fig. 3. Experimental tests on this sculpture showed 
that there was a significant sound attenuation 
(~15 dB) at 1.67 kHz. This seminal work led to further 
investigation of acoustic waves passing over periodic 
structures. Such structures are called “Sonic crystals” 
(SC) or “Phononic crystals” . Phononic crystals gen­
erally refer to structures made o f similar host and scat- 
terer material, such as nickel cylinders embedded in 
copper matrix etc., while sonic crystal refer to struc­
ture made of dissimilar materials, such as steel cylin­
ders in water etc. Phononic crystal made of solid 
materials are for elastic wave propagation having both
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Fig. 3. First experimental revelation ofthe sonic crystal was found by an artistic structure designed by Eusebio Sempere in Madrid.

longitudinal and transverse wave components; while in 
the sonic crystal only longitudinal wave component is 
considered.

Sound propagation over a periodic arrangement of 
scatterers has been of interest over the past few 
decades. The first experimental observation of sound 
attenuation by a 2-D sonic crystal was made by M ar­
tinez et al. [1] in 1995, when it was found that an artis­
tic creation has a possible engineering application. 
The structure was based on minimalistic design (an art 
movement in 1950’s based on simplistic forms and 
designs), and consisted of hollow steel rods, 3 cm  in 
outer diameter, arranged on a square lattice with a lat­
tice constant o f 10 cm. When sound propagates 
through this structure, it was found that certain bands 
of frequencies (centered around 1670 Hz) were signif­
icantly attenuated compared to other frequencies. The 
frequency corresponds to the destructive interference 
due to Bragg’s reflection and thus the experimental 
measurements were explained by the opening up of 
first band gap in the periodic structure. This finding 
led to increased interest among researchers to explore 
sound propagation through periodic structures. Siga- 
las and Economou [11] obtained the band gap for the 
same experiment on the sculpture using the plane wave 
expansion method.

Dowling [12] has initially drawn correspondence 
from the electronic band gap in semiconductors and 
photonic band gap in photonic crystal and applied to 
sound wave. He has showed theoretically in 1992 that

a one dimensional structure made by periodic varia­
tion in density of fluid will exhibit band gaps. James 
etal. [13] have demonstrated one dimensional sonic 
crystal made of perspex plates in water, theoretically 
and experimentally. They have also demonstrated that 
a narrow pass band can be obtained within the band 
gap by introducing a defect in the sonic crystal. Thus 
such structure can be used as a frequency filter.

2. SOUND INSULATION

Since the sound wave is inhibited to propagate 
through the sonic crystal in the band gap region, one 
of the direct applications of sonic crystal is in selective 
sound reduction. Multilayer partition based on peri­
odic arrangement of layers showed the properties of 
one dimensional sonic crystal [14]. Such a one dimen­
sional sonic crystal was able to overcome the increase 
in transmission at the critical frequency of the panel. 
Trees arranged in a two dimensional periodic arrange­
m ent [15] gave better sound attenuation compared to 
a green belt or forest. The frequencies attenuated cor­
responded to the periodicity of the lattice, and the 
array of trees works like a sonic crystal. Hence it was 
proposed that these periodic arrays of trees can be used 
as green acoustic screens. Similarly, in another study 
[16], periodic structures of size 1.11 m  x 7.2 m  with 
cylinders of diameter 16 cm  were used as acoustic bar­
riers in outdoors. The results showed good agreement 
with those predicted by Maekawa [17] for barriers.
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Goffaux et al. [18] has also proposed using sonic 
crystals as an insulation partition. A comparison of 
sound attenuation by the sonic crystal inside the band 
gap is made with the mass law. It is shown that beyond 
nine periods of repeating unit, sonic crystal performs 
better than the mass law. There are similarly many 
experimental demonstration of sound attenuation in 
the band gap region [19—21]. Kushwaha [22] has pro­
posed a multiperiodic tandem  structure for obtaining 
a sound attenuation over a wide frequency range.

Batra et al. [23] has experimentally demonstrated 
three-dimensional sonic crystal made of lead spheres 
and brass beads in unsaturated polyester resin. The 
sound attenuation is explained on the basis of band 
gaps and it is proposed that such structures can be used 
for selective noise reduction.

Recently Krynkin et al. [24] has also studied the 
effect of a nearby surface on the acoustic performance 
of sonic crystal. They have validated their work with 
semi-analytical predictions based on multiple scatter­
ing theory and numerical simulations based on a 
boundary element formulations. It is concluded that 
the destructive interference of sound reflection by 
ground surface can significantly affect the transmis­
sion spectra.

The same author has also explained scattering by 
coupled resonating elements [25]. They have consid­
ered different types o f resonators— empty N  slip pipes 
and latex cylinder covered by a concentric PVC cylin­
der with four slits. It is shown that increase in slits 
causes an increase in frequency of Helmholtz resona­
tor. Using such coupled resonators in sonic crystal can 
lead to low frequency sound attenuation.

Recently elastic shells with different material prop­
erties have also been used as the scattering element 
[26]. The resonance of such shells can improve in 
sound attenuation in the low frequency below the first 
band gap.

3. FREQUENCY FILTERS AND ACOUSTIC 
WAVEGUIDES

Sonic crystal can also be used as a frequency filter 
which does not allow sound wave to propagate in the 
band gap region. Another way of using sonic crystal as 
frequency filter is by introducing defects in the peri­
odic structure. The defect mode corresponds to a nar­
row frequency pass band within the band gap. A one 
dimensional model of defect mode was presented by 
Munday et al. [27]. Khelif et al. demonstrated a tun ­
able narrow pass band in a sonic crystal consisting of 
steel cylinders in water theoretically and experimen­
tally [28, 29]. They have also shown that waveguides 
can be obtained by removing a single row of the scat- 
terers [30, 31]. These waveguides are also dem on­
strated for tight bending of acoustic waves in the sonic 
crystal. Li et al. [32] has shown bending and branching 
of acoustic waves in V shape waveguides made from 
two-dimensional sonic crystal.

Pennec et al. [33] has theoretically investigated 
propagation of acoustic waves through the waveguides 
of steel hollow cylinders arranged periodically in 
water. They have demonstrated the presence of narrow 
pass band inside a broad stop band. The pass band can 
be adjusted by appropriately selecting the inner radius 
of the hollow cylinders or by filling the cylinders with 
a different density fluid. They have also extended this 
to a waveguide with hollow steel cylinders with two dif­
ferent inner radii varying alternatively. Such a novel 
waveguide has been shown to have two narrow 
pass bands corresponding to individual radii of hollow 
cylinder. An active guiding device is proposed by 
changing the fluid in these two different cylinders. 
Also, a Y-shaped waveguide is shown to act as a m ulti­
plexer and demultiplexer for separating and merging 
signals with different frequencies.

Miyashita et al. [34, 35] has demonstrated experi­
mentally sonic crystal waveguide made by acrylic cyl­
inders in air. Straight waveguide and sharp bending 
waveguide composed of line of single defect are shown 
to have a good transmission in a narrow pass band. 
They have proposed waveguides based on defect in 
sonic crystal as potential application in acoustic cir­
cuits made on sonic crystal slab.

4. METAMATERIALS AND RADIAL WAVE 
CRYSTAL

Recently, there has been an immense growth in the 
area of metamaterials, due to their ability to m anipu­
late light and sound waves, which are not available in 
nature. Metamaterials are artificial structures made by 
periodic arrangement of scatterers, similar to sonic 
crystal, but in this case the periodic units are much 
smaller than the wavelength propagating over the 
structure. As a result, the wave sees an “effective m ate­
rial properties.” It is something like replacing natural 
atoms by larger m an-m ade atoms. The result of such 
design leads to unique material properties such as neg­
ative density, negative bulk modulus, negative refrac­
tive index, etc.

The first concept o f metamaterial was proposed by 
Veselago for the electromagnetic wave in 1968 [36]. 
Later on Pendry et al. [37, 38] proposed artificial 
structure materials having effective negative perm e­
ability and permittivity. The negative refractive index 
material was first demonstrated at GHz frequency 
[39,40].

The first experimental evidence of acoustic 
metamaterial was observed by Liu et al. [41], where 
locally resonant sonic materials demonstrated nega­
tive effective dynamic density. Recently, Fang et al. 
[42] has also proposed acoustic metamaterial based on 
Helmholtz resonators which exhibit negative effective 
modulus. The feasibility of such negative effective 
material properties has led to very interesting applica­
tions. One such application is in cloaking, or making
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an object invisible to electromagnetic [43, 44] or 
acoustic wave [45—48].

Torrent et al. [49, 50] has also recently proposed a 
new kind of metamaterial known as radial wave crystal 
which are metamaterials in polar or radial coordinate. 
They have demonstrated that such metamaterials pos­
sess anisotropic material properties. The material 
properties of density tensor and bulk modulus were 
obtained from the property of invariable in translation 
on the governing wave equation from one unit cell to 
another. We have used similar concept to design a 
radial sonic crystal to attenuate sound propagating 
with circular wavefront.

Arc shared phononic crystal have also been studied 
recently using transfer matrix m ethod in cylindrical 
coordinates [51].

5. O THER APPLICATIONS
Another interesting application of sonic crystals is 

in sound diffusers [52] in room. Such diffusers can 
help in improving the acoustic performance of a room 
by reducing the echo and increasing the sound field 
diffusiveness, especially at low frequencies.

Sonic crystals have also been shown for the appli­
cation of acoustic diode for unidirectional sound 
propagation [53]. Previously it has been demonstrated 
that it requires strongly nonlinear materials to break 
the time reversal symmetry in a structure [54, 55]. 
However, in this recent work Li et al. [53] have exper­
imentally realized unidirectional sound transmission 
through the sonic crystal. The nonreciprocal sound 
transmission is controlled simply by mechanically 
rotating the square cylinders of the sonic crystal. Li 
et al. [53] also claims that the new model of sonic crys­
tal based acoustic diode being a linear system is more 
energy efficient and operates at a broader bandwidth 
than the acoustic rectification based on nonlinear 
materials.

Sonic crystal is also used for an application of liq­
uid sensor [56]. The liquid sensor is designed based on 
the transmission spectra of the sonic crystal. The shift 
in the band gap is used to predict the material proper­
ties of the liquid. Sonic crystal is also used to exhibit 
the phenom enon of resonant tunneling [57, 58].

6 . N U M ERICA L M ETHODS
FOR CALCULATION AND OPTIM IZATION 

OF TH E BAND GAP
All the applications of the sonic crystal are prim a­

rily based on the prediction of the band gap. The band 
gap is characterized by the position (center frequency) 
and the width of the band gap. There are methods such 
as plane wave expansion m ethod [11, 59—61] and m ul­
tiple scattering m ethod [62, 63] for calculating the 
band structure. These methods were mainly developed 
for photonic and phononic crystals which were also 
extended to sonic crystal.

The first complete band gap calculation for peri­
odic elastic composites was presented by Kushwaha 
et al. in 1993 [64]. The computation was performed for 
nickel alloy cylinders in aluminum alloy background 
and vice versa. Phononic band gaps have also been 
obtained using a 1-D and 2-D  periodic spring mass 
system by Jensen [65]. Acoustic band gaps have also 
been shown for silica cylinders in viscous liquid [66]. 
Plane wave expansion m ethod is used to investigate the 
effect of viscosity and it has been shown that viscosity 
can lead to larger band gaps. Band gaps are also shown 
for time varying materials [67]. Thus by varying the 
material properties of the phononic crystal, band gaps 
can be modified dynamically. Band gaps have also 
been optimized using structure topology optimization 
[68]. Band gaps can also be tuned by placing addi­
tional rods in the unit cell [69].

Miyashita [70] has demonstrated experimentally 
sound attenuation by an array o f 10 x 10 acrylic cylin­
ders. He has explained the sound reduction by obtain­
ing sound transmission over a finite periodic structure 
using the finite difference time domain method. How­
ever, this m ethod is computationally expensive, as one 
solves the wave propagation over two dimensional 
periodic structures in real time. The space discretiza­
tion is restricted by the wavelength of propagating 
wave and the time step is restricted by the Courant’s 
condition, which makes this m ethod computationally 
very expensive. In another similar work [59], they have 
used 10 x 10 copper cylinders in air. Sound transmis­
sion through the sonic crystal was obtained experi­
mentally, which was compared with the numerical 
prediction from the finite difference time domain 
m ethod and band gap calculation from the plane wave 
expansion method. It was further shown that since the 
impedance mismatch between copper and air is very 
high, sound transmission through the hollow and filled 
cylinders is the same. Therefore, the cylinders bound­
ary can be effectively modeled as sound hard bound­
aries.

An improved numerical m ethod based on finite dif­
ference time domain m ethod was proposed by Cao 
et al. [71] to obtain the band structure. The m ethod is 
shown to overcome the convergence problem of the 
plane wave expansion m ethod for liquid cylinder in 
solid matrix. The computational time is also reduced 
compared to the conventional finite difference time 
domain method.

Chen and Ye [72] have shown that as the cylinders 
are randomized, the sound attenuation is improved 
over a wide range of frequencies. Band gap have also 
been shown to increase by reducing the symmetry of 
the structure [73]. Goffaux [74] has also shown that 
the band gaps can be tuned or controlled by rotating 
the sonic crystal made of rectangular scatterers. Tun­
able acoustic band gap are also shown for sonic crystal 
made of dielectric elastomer cylindrical actuator [75]. 
Applying voltage to the dielectric elastomer cylindrical
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(a) (b)

Fig. 4. (a) A two dimensional periodic structure made of circular scatterers arranged on a square lattice. On the left side there is 
plane wave sound source. The dotted square shows a unit cell. (b) Magnified view of a unit cell with various geometric parameters.

actuator causes a radial strain in the cylinders which 
affects the band gap.

Kushwaha [76] has also studied a three dimen­
sional sonic crystal made of air bubbles in water in dif­
ferent configurations such as, face-centered cubic, 
body-centered cubic and simple-cubic. Such structure 
with huge difference in acoustic impedance has been 
reported to have widest band gap [77]. Kushwaha et al. 
[78] has performed band gap calculations for three 
dimensional sonic crystal made of rigid spheres and 
cubes in air. They have also proposed a tandem  struc­
ture that allows for an ultrawideband filter for environ­
m ental or industrial noise in the desired frequency 
range. Band gap calculated for cubical array of hydro­
gen spheres in air [79].

7. EVANESCENT WAVE

Recently, an extended plane wave expansion 
(EPWE) m ethod has been proposed [80, 81] to com ­
pute the complex band structure [82] of the sonic crys­
tal. The complex band structure gives the additional 
information of the decay constant (imaginary part of 
wavenumber) of the sound wave in the band gap 
region. Also, it has been shown that for a finite struc­
ture or for structures having defects, the propagating 
wave is evanescent in nature [83]. Therefore, using the 
decay constant, sound attenuation through the finite 
arrangement of scatterers can be obtained.

The complex band gap is important because we 
rarely find an “infinite” sonic crystal, especially for 
applications of sound wave in audible frequency range. 
The dimension of sonic crystal (based on Bragg’s 
reflection) depends on the wavelength of the sound 
wave, which is quite large (~few cm) for the audible 
frequency range. Therefore, the sonic crystal has a 
finite num ber of scatterers and it is important to eval­
uate the performance of a finite sonic crystal. There 
are methods such as finite difference time domain 
m ethod to obtain transmission coefficient through the 
finite sonic crystal, but such methods are computa­
tionally very expensive. However, obtaining the atten­

uation through the decay constant gives a quick check 
on the sound attenuation level expected by the struc­
ture in the band gap region.

8. N U M ERICA L M ETHOD
In the present section, numerical m ethod devel­

oped by author [2, 10, 84—86] is presented. Sound 
propagation over a two dimensional sonic crystal is 
considered. The scatterers are sound hard cylinders 
with diameter 3 cm, arranged on a square lattice with 
lattice constant of 4.25 cm. The sonic crystal is shown 
in Fig. 4a. The sound wave with a planar wavefront 
propagates along the symmetry direction (ГХ) of the 
periodic structure. The triangle ГХ represents the irre­
ducible part o f the first Brillouin zone [3]. Because of 
the symmetry, wave propagation in any direction can 
be represented by wave propagation along the irreduc­
ible part of the Brillouin zone. However, in the present 
study, sound propagation is considered only along the 
symmetric direction ГХ.

The periodic structure is represented by a unit cell 
as shown by the dotted square in Fig. 4a. Simple trans­
lation of this unit cell can form the whole periodic 
structure. Figure 4b shows the magnified view of the 
unit cell with some geometric parameters. The lattice 
constant is given by a which is the center to center dis­
tance between the adjacent scatterers. Since this is a 
square lattice, therefore the lattice constant is the 
same in both x  and y  directions.

Sound propagation through the unit cell takes 
place through the air (shaded region in Fig. 4b) as the 
scatterers are sound hard with respect to air. Sound 
propagation can thus be modeled by the Webster horn 
equation [87, 88]

d2p ( x , -) _ c - d  f  ̂ dp(x, t) 
dt2 S  d x v dx  -

(2)

wherep  is the pressure, c is the velocity of sound in air 
and S  is the variable cross sectional area. The cross 
sectional area S  is perpendicular to the direction of 
wave propagation and is represented by the vertical
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bold line in Fig. 4b. Furthermore, we consider the case 
when pressure is harmonic, and the signal can be rep­
resented as a sum of harmonic functions

p (x , t) = R e(P (x )e;fflt), (3)
where P(x) is a complex-valued amplitude.

For a harmonic response, the Webster horn equa­
tion further reduces to Eq. (4):

£ ? + dP  ( S )  + i  P  = 0, (4)
x 2 dx  (  S c

where S ' represents the first derivative of S  with respect 
to x  and ю is the angular frequency of the propagating 
wave.

Wave propagation in a periodic structure, as shown 
by Fig. 4a, can be restricted to a unit cell (Fig. 4b) by 
using the Bloch theorem  [3] or the Floquet theorem 
for 1-D case [4]. The wave propagating in such a peri­
odic structure is given as

p  (x ) = e kxp (  x ), (5)
where p(x) is a periodic function with periodicity a,
i.e. ф(а + x) =  p(x). Bloch waves are plane waves (eikx) 
modulated with a periodic function p(x), which has 
the same periodicity as that of the lattice structure.

Using the Floquet theorem  with the Webster horn 
equation in a unit cell, the governing equation reduces 
to the following equation:

I d V  + d p Г2 ik  + + фГi k S  -
I dx2 d x (  S J U  S J \
1 \ (6)

2ю+ -  p  = 0.
c

The above equation is solved using the finite difference 
method. The unit cell is divided into N  segments of 
length h with (N  + 1) points in the x direction. A sec­
ond order central difference scheme is used for the 
finite difference discretization:

d-jp = ( фУ+1 -  2(py + Фу-Л + 0 (h 2), (7)
d x2 (  h 2 J

d p  = Г (t)/ + i-^ (p/^i' 
dx  (  2 h

+ O (h 2). (8)

As the structure is periodic, periodic boundary condi­
tions are applied at the first and last node of the dis­
cretized geometry.

This transforms Eq. (6) to an eigenvalue problem 
given by Eq. (9).

ю2
[A (k)]{p}  + i .  {p} = 0, (9)c2

where A  is a matrix whose coefficients are function of 
the wavenumber k  which is varied in the first Brillouin

Frequency, kHz

Wave number k, 1/m

Fig. 5. Band gap for an infinite sonic crystal corresponding 
to Fig. 3.1 with a = 4.25 cm and d = 3 cm, along the sym­
metry direction ГХ.

problem (Eq. (9)) results in the feasible values of fre­
quencies that can propagate through the structure. 
This results in the band structure or the dispersion 
relation for periodic structure as shown in Fig. 5. The 
band structure is a plot between the frequency and 
wavenumber. The band gaps are represented by the 
shaded region where there is no real wave that can 
propagate through the periodic structure.

The band gap calculation shows that the first band 
gap opens up at a frequency band of 2795—5470 Hz. A 
band gap is represented by two parameters: center fre­
quency and band width. The center frequency of the 
band gap is the mean frequency of the band gap, which 
in this case is 4132 Hz. The center frequency of the 
periodic structure can also be predicted by the Bragg’s 
law [89] given by Eq. (10):

The center frequency from the Bragg’s law prediction 
is 4035 Hz, which is quite close to the center frequency 
predicted by the numerical model (4132 Hz).

Another representative param eter of a band gap is 
the band width which is the difference between the 
upper and lower frequencies of a band gap. The band 
width for the first band gap is 2675 Hz.

In the band gap region of 2795—5470 Hz, no prop­
agating wave exist for an “infinite sonic crystal.” There 
are other band gaps at higher frequencies, three of 
which are shown by the shaded region in Fig. 5. How­
ever, the band widths of the three band gaps are quite 
small.

9. COMPLEX FREQUENCY BAND 
STRUCTURE AND DECAY CONSTANT

zone n n \—  < k  < - . The solution to the eigenvalue 
a aJ

In the last section, a m ethod to obtain band gaps is 
described where there is no solution to the wave fre-
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quency for a given wavenumber varying in the first 
Brillouin zone. As m entioned in previously, there are 
many other methods to obtain band gap. However, 
band gap does not give any information about the 
sound attenuation over the finite sonic crystal.

In  this section, a m ethod is presented to obtain 
decay constant and complex band gap which can pre­
dict sound attenuation by the sonic crystal in the band 
gap region. Decay constant is the imaginary part of the 
wavenumber, which predicts evanescent wave in the 
band gap region. The attenuation in the evanescent 
wave over a finite length can be obtained numerically, 
which gives the sound attenuation by the finite sonic 
crystal. The combined plot of band gap along with the 
decay constant is referred as the complex band gap or 
complex dispersion relation.

In  the previous section, it was shown that Webster 
horn equation along with Floquet theorem  leads to a 
differential equation given by Eq. (6), which reduces 
to an eigenvalue problem (Eq. (9)) using the finite dif­
ference discretization and periodic boundary condi­
tion. For this case, the independent variable was wave­
num ber к  and the problem was solved for feasible val­
ues of angular frequency ю. Equation (6) can be 
reformulated in the reverse way with the independent 
variable being angular frequency, and solving for the 
dependent variable wavenumber:

к2 {- ф } + к \ 2i d x + ф(  i s

+ djp  + dp  lS '
sx2 dx  (  S'

ю
+ -  ф = 0 .

(11)

The above equation when discretized using finite 
difference equations (Eqs. (7), (8)) along with peri­
odic boundary condition leads to the following qua­
dratic eigenvalue problem in wavenumber:

[ A 2 ] {ф } к2 + [Ai ] {Ф} к  + [Ao ] {Ф} = 0 , (12)

where, A { are all matrices of size N  x N, with known 
coefficients which are function of frequency and {ф} is 
the eigenvector of size N  x 1. The matrices A0 and A1 
are periodic tridiagonal matrices, whose coefficients 
are given as

(Ao)m, m - 1
_S_ 

h 2 2 S h , (Ao)m, m ю
c-

2
h2

(Ao)m, m + 1 — + -Q— for 2 < m < N  -  1. 
h2 2 Sh

Due to the periodicity of the unit cell, the first and last 
rows are given by

(A0 )1, 1 = 

(A0 )1, N =

(A0 )N, N - 1 =

l  ю) 2 2
и h2

_1_ S'
h2 " 2Sh,

J_ S'
h2 2Sh

(A0 )1,2 h2 + 2Sh h

( . ) _ 1 ^  S'
(A0 )n> 1 = h2 + 2 S h ,

(A0 )N, N = l ) - .
h

Similarly coefficients of periodic tridiagonal matrix A1 
are

(A1)m, m - 1
-
h (A1 )m, m (A1)m, m + 1

-
h

for 2 < m < N  -  1. (A1 )1 1 (A1 )1, 2 =
-
h ,

(A1 )1, N = h , (A1 )N, 1 _  -  (A1 )N, N- 1
-
h ,

(A1 )N, N = i s  .

Lastly, A2 is a diagonal matrix with diagonal element as

(A2 )m, m = -1  for 1 < m < N .
The above quadratic eigenvalue problem (Eq. (12)) 

is solved by rearranging the equation in a linear form as 
shown below:

Оо J Ф |  = A1 A 2
(  0 I ) l к  ф J (  I 0 )

Ф
к  ф

(13)

which is solved using a standard eigenvalue solver in 
Matlab to obtain к. In general, the wavenumber к  for a 
given frequency is found to be a complex number:

к  = кК + ik I , (14)
where кК and к1 are the real and imaginary parts, 
respectively.

In a unit cell, the pressure variation is given by 
Eq. (5). The complex wavenumber к  = кК + 1к1 causes 
as exponential decay in the amplitude of wave due to 
the imaginary part of the wavenumber к/.

P  (x ) = ф( x ) exp ( —к1х ) exp ( ikRx ). (15)
If к is real valued (к1 =  0), wave propagates 

with constant amplitude. For a positive imaginary part 
(к1 > 0), wave has an evanescent behavior, leading to 
attenuation in the amplitude of pressure wave in the 
propagating direction. The value of к1 gives us the 
decay in the amplitude of the wave, and hence it is 
referred as the decay constant. The decay constant and 
complex band structure is plotted in Fig. 6 . The first 
band gap predicted is from 2795—5470 Hz with the 
center frequency of 4132 Hz. The maximum value of 
decay constant at the center frequency is found to be 
24.75.

As it can be seen from the figure, the band gap cor­
responds to the range of frequencies where a nonzero 
value of к1 exists. Thus, for a finite sonic crystal, the
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propagating wave undergoes sound attenuation for the 
frequencies corresponding to the band gap. Based on 
Eq. (15), sound attenuation (in dB) over a length x  is 
calculated as

A ttenua tion  = 20 x log(1 / exp(—k jx )). (16)
The sound attenuation over a length of five unit 

cells (0.21 m) is predicted by the decay constant and is 
plotted in Fig. 7 for a frequency range of 500— 
6000 Hz. The sound attenuation in the band gap 
region is not uniform; rather it is elliptic in nature. The 
maximum sound attenuation is found to be 45 dB at 
the center frequency of the band gap.

(a) (b)

10. SOUND ATTENUATION BY TH E SONIC
CRYSTAL U SIN G  TH E WEBSTER HORN 

EQUATION
Sound attenuation by a finite sonic crystal can be 

directly obtained by modeling the sonic crystal as a 
waveguide and obtaining sound transmission through 
the waveguide using the Webster horn equation. The 
difference between previous sections and this section 
is that no periodic condition, such as Bloch theorem 
or Floquet theorem, is implemented in the formula­
tion. The periodicity is in the geometry of the 
waveguide.

The problem considered is shown in Fig. 8a with 
sonic crystal consisting of five layers of scatterers. A 
planar sound wave propagates along the symmetry 
direction (ГХ) of the sonic crystal. Since the problem 
is symmetric about AB and CD, the model can be 
reduced to a strip model as shown by the rectangle in 
Fig. 8a.

The model is further reduced by taking the symme­
try about the center line to give a waveguide as shown 
in Fig. 8b. The top and bottom  surfaces including the 
cylinders are modeled as sound hard boundaries. 
There is a sound source at the inlet end, and radiation 
boundary condition is applied at the outlet end. The 
problem is effectively reduced to one of sound propa­
gation through a symmetric waveguide as shown in 
Fig. 8b which is solved using the Webster horn equa­
tion.

Sound propagating through a waveguide with a 
variable cross-sectional area is modeled by the Webster 
horn equation. The Webster horn equation considers 
pressure to be a function of the direction of wave prop­
agation, and constant over the cross-section of the 
waveguide. This reduces the problem to a 1-D model 
represented by an ordinary differential equation. For 
harmonic excitation, the Webster horn equation is 
given by the Eq. (4), where S  is represented by the 
cross-sectional area of the waveguide as shown in 
Fig. 8b.

The Webster horn equation is discretized along the 
x-axis using the second-order finite difference method 
to obtain a system of linear equations. The radius of 
cylinders r  is 1.5 cm  and lattice spacing a is 4.25 cm.

Fig. 6. Complex band structure for an infinite sonic crystal. 
(a) Normal band structure. (b) Decay constant as a func­
tion of frequency. The decay constant is non-zero in the 
band gap regions.

Attenuation, dB

Fig. 7. Sound attenuation predicted by the decay constant.

(a)

A B

..O O O O O .
c

D
•ooooo

(b) 
y

a/2
x

Fig. 8. (a) Sound propagating over a sonic crystal consist­
ing of five layers of scatterers. Using symmetry of the struc­
ture, the problem is reduced to a strip model shown by 
rectangle ACDB. (b) A symmetric waveguide used to 
model sound propagation through the sonic crystal using 
Webster horn equation.
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Attenuation, dB

Fig. 9. Sound attenuation by the finite sonic crystal using 
the Webster horn equation and decay constant.

The cross-sectional area function S(x) is shown in 
Fig. 8b by the dashed line. The numerical results for 
pressure were found to converge for 2000 mesh points, 
for frequency up to 6000 Hz.

Sound attenuation by the sonic crystal is given by 
the insertion loss.

IL  = S P L without SC — S P L ^ sc, (17)
where S P L ^ ^ t  sc and SP L w„h sc are the sound pressure 
levels at the same position without and with the sonic 
crystal, respectively. Sound pressure is obtained 10 cm  
(~2.5a) away from the last cylinder. The pressure 
amplitude obtained at this position corresponds to 
sound pressure level with the sonic crystal (SP Lwith SC). 
When the cylinders are removed, the waveguide 
becomes a straight channel with uniform pressure 
amplitude across the cross-section, as the other end 
has the radiation boundary condition. Therefore, the 
sound pressure level without cylinders at the same 
position is the same as that corresponding to the inci­
dent wave amplitude when the cylinders are present.

Using the standard definition of sound pressure 
level, the above expression for insertion loss reduces to

IL  = 20 x logi0 p )  , (18)

where Pi  is the amplitude of the inlet pressure wave 
that is incident on the sonic crystal and PO is the 
amplitude of the outgoing pressure wave measured 
10 cm  after the last cylinder.

At the inlet boundary, a sound source with pressure 
of 1 Pa was prescribed. However, the prescribed pres­
sure at the inlet boundary is not the forward traveling 
incident wave. The pressure at the inlet boundary is the 
resultant of forward traveling incident wave and back­
ward traveling reflected wave. Pressure and velocity 
condition at the inlet boundary are used to extract the 
incident pressure wave.

The net pressure at the inlet can be written as a 
combination of forward and backward travelling wave:

p (x , t) = R e{Pjei(at-kx) + PRei(at + kx)}

= Re{ P  (x ) ei№ t},
therefore,

P  (x ) = P e ikx + PReikx, (20)
where Pi  and Pr are the amplitudes of the incident and 
reflected wave, respectively.

Similarly, the velocity is given as [88]

u (x, t) = Rei — (PRei(a t - kx) -  PRei(a t+kx ) ) \
[pc J (21)

= Re{ U(x) eiat},
where

U (x) = — (Pje~ikx -  PReikx) . (22)
P c

At the inlet (x =  0), Eqs. 20 and 3.22 reduces to

P|x .  0 = P i + Pr . (23)

U x .  0 = -  -  - .  (24)p c pc
The above set of simultaneous equations is solved to 

get the amplitude of incident forward traveling wave as 
a function of inlet boundary pressure P  and velocity U 
at the boundary:

P i
P +  pc 
• 2 x = 0

(25)

The outgoing wave amplitude (PO) can be directly 
obtained from the pressure field in the output region as 
there is no reflected wave in the output region.

In this way, sound attenuation at a particular fre­
quency is obtained. The procedure is repeated for a 
range of frequencies from 500 to 6000 Hz with a fre­
quency step of10 Hz, to obtain the sound attenuation 
by five cylindrical scatterers arranged periodically. 
Sound attenuation by the finite sonic crystal using the 
Webster horn equation and from the decay constant is 
plotted in Fig. 9.

The sound attenuation by the Webster horn equa­
tion for a finite sonic crystal shows significant sound 
attenuation (>20 dB) in the band gap region— 2795— 
5470 Hz, as predicted by the 1-D model. Further the 
sound attenuation magnitude is quite close to the pre­
dictions made by the decay constant. Decay constant 
is based on an infinite sonic crystal, therefore, for the 
frequencies not in the band gap (such as below 
2500 Hz), sound attenuation is zero. However, for a 
finite sonic crystal, there is a finite sound attenuation, 
which increases significantly in the band gap region.

11. CONCLUSIONS
The paper presents some of the recent findings 

related to sonic crystal. The paper discusses the basis 
of sonic crystal to provide a band gap or frequency
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range where there is high sound attenuation. The 
paper discusses some of the applications of sonic crys­
tal in sound insulation, frequency filter, acoustic 
waveguides, metamaterials, radial wave crystal, etc. 
The paper also discusses about some of the numerical 
methods used for the calculation and prediction of 
band gap. Sonic crystal thus provides a very interesting 
way to control and manipulate the sound wave.
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