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Abstract— In order to obtain the transmission properties of one-dimensional phononic crystal under total 
evanescent waves, we design structure model. Basing on the basic acoustic wave equations and boundary con­
dition as well as the Bloch theory, we study the band structure of one-dimensional phononic crystal. We sum­
marize the properties of the mode based on the coupling of total evanescent waves and explain its physical 
mechanism. There are three transmission modes in phononic crystal. Based on the coupling of total evanes­
cent waves, the number of perfect transmission peaks is just equal to the number of structure period, and the 
thickness of period can be much less than the wave length.
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1. INTRO D U CTIO N

Classical waves in periodic material structure have 
the band gap structures just as those of electronics in 
semiconductor lattice [1—4]. Corresponding to differ­
ent classical waves, people have proposed the concepts 
of photonic crystals and phononic crystals. The main 
properties of photonic crystals and phononic crystals 
are their band gap structures. The waves can be trans­
mitted in the bands and are prohibited in the gaps. Any 
waves follow the Bloch theory in an ideal periodic 
structure [5], i.e., they exist in the form of Bloch 
waves. The study of phononic crystals is usually with 
the help of the study methods for photonic crystals. 
However, acoustic waves and electromagnetic waves 
are different in physics. Especially, acoustic waves have 
two forms of transverse wave and longitudinal wave in 
solid materials. Thus phononic crystals and photonic 
crystals have different transmission properties. 
Although people have carried out extensive and 
deep study on photonic crystals and phononic crystals 
[6—9], it does not mean that such study has come to its 
end. With the emergence of new materials and new 
structure models, the research domain may often open 
a new door, for example, the study of negative refrac­
tion of photonic crystals and phononic crystals in 
recent years [10, 11]. For the forming mechanism of 
band gaps of photonic crystals and phononic crystals, 
the traditional theory attributes them  to Bragg scatter
[4] and local resonances [8]. Liu and we proposed a 
new transmission mechanism of photonic crystals and 1

1 The article is published in the original.

phononic crystals based on the effect of photon or 
phonon tunneling [12—15]. It shows that classical 
waves can be transmitted in layered structure on the 
condition of total reflection. Following the ideas of 
[12—15], we further propose a transmission mode 
which based on the coupling of total evanescent waves 
in this study. Compared with the traditional transmis­
sion modes, our transmission mode takes on some 
unique features which have not been found in pub­
lished papers.

2. M O D EL AND M ETHOD
Figure 1 is the schematic of one-dimensional 

phononic crystal (1D PC). The whole structure is

x
N  = 1 N  = 2 N  = 3

2 0

z

Fig. 1. Schematic of one-dimensional phononic crystal in 
the background of air (0). 1 and 2 are glass and water, 
respectively. N  is the period number.
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placed along the z  axis and in the background of air 0 . 
1 and 2 are the solid and liquid media, respectively. 
N  is the period number. The densities, velocities and 
thicknesses for layers 1 and 2 are denoted as pb p2, v1l, 
v1t, v 2L, d 1, d2, respectively, where the subscripts L and 
T denote transverse waves and longitudinal waves. The 
period length is d  =  d1 + d2. The density and velocity 
for the background media are p0 and v0L. For layer 2 
and the background media, there are only longitudinal 
waves. The plane acoustic waves propagate in the 
xo z  plane. After multiple refractions and reflections, 
the displacement field within each layer is a superposi­
tion o f transmitted and reflected waves as shown in 
Fig. 2. Within layer 1, the displacements for transverse 
waves and longitudinal waves are denoted as

A1 = A+ exp [ i (k 1L cos 0 1Lz + k 1L sin 0 1LX -  ю 0 ] ( 1)

B 1 = B—exp [i (—k 1Lcos01Lz + k 1Lsin01Lx -  юt)] (2)

C1 = C+ exp [i( k  1Tcos01Tz + k1 Tsin01Tx -  юt)] (3)

D 1 = D— exp[i (—k 1 Tcos01 Tz  + k1Tsin01Tx -  ю?)] (4)
where “+ ” and “—” denote transmitted and reflected 
waves, respectively. Within layer 2, the displacements 
for longitudinal waves are denoted as

A2 = A+ exp [i (k 2Lcos01lZ + k 2Ls in 0 ^ x  -  юt) ] , (5)

B2 = B2 exp[i(—k2l cos02lZ + k 2Lsin02lx -  юt) ] . (6) 
In all equations, ю is angular frequency, kL =  ю/vL and 
k T =  ю/v  T are the wave vectors, vl and v T are the veloc­
ities, 0L and 0T are the angles between propagating 
direction and z axis. The stress is given by use of 
Hooker’s law

, f d  Uz d Щ  .  5 Uz
= Xf a t  + a f J  + 211 a T  •

fd  u x d uz\
^  = 4  ^  •

(7)

where Ux and Uz are the displacement components in 
the x and z  directions. X and p are Lame’s constants 
which satisfy the following equation:

X + 2 p = p c2L, p = p c2T. (8)
In liquid p =  0. Continuity of displacement at the 
interface gives:

cos 0 1LA1 -  cos 01LB1 + sin 0 1TC1 + sin 01TD1 

= cos02LA2 -  cos02LB2.
Continuity of stress at the interface gives

2 2  ik1L (X1 + 2 p 1cos 01L)A1 + ik1L (X1 + 2 p 1cos 01L)B1

+ ( ik1Tp 1sin201TC1 -  ik1Tp 1sin201TD1) (10)

(9)

= ik 2LX2A 2 + ik 2L X2B2.
If we neglect the viscosity of liquid, the displace­

m ent and stress components in  the x  direction in 
layer 2 cannot be transmitted into layer 1. Thus the

x

г

k lT
V

N '  ®ii'4 k2L

k lL ' ' 4 \

elLBi
k 1T k2Lif *

NCi ,k 1L
/ 01L /

A2 X " "^2L

A i //  01L

1 2

Fig. 2. The transversal wave and longitudinal wave in the 
multilayers.

displacement and stress components in the x direction 
in layer 1 are both zero. From  Ujx =  0 and

p
u + d u
■ dz dx

=  0, we have

C1 -  D 1 = [ sin 01 l/ cos 01 t ](A1 + B1) , 

C1 + D 1 = [ k1L sin201L/ (  k1T cos201 t)](A 1 -  
From  Eqs. (11) and (12), we obtain

C1 =
sin0 1L + /  2

.cos 01T k1Tcos201T_

+ ' su^ l 
_cos01T

/j^Ls ^ 0 1 L'
k 1T cos201T_

B1 /2  •

( 11) 

B1). ( 12)

(13)

D1
~sin0!L 
_cos0 1T k1 t cos 2 01T—

A1/2

- а п ^  + 
_cos0 1T

k  1 l sin 2 0 1 х~ 
k  1 t cos 201T-

B1/ 2 .

(14)

After Eqs. (13) and (14) are taken into Eqs. (9) and
( 10), the acoustic waves in one-dimensional solid— 
liquid phononic crystal are united into longitudinal 
waves. According to the idea of transfer matrix for lay­
ered structures [3], we use

UNi
A Ni" 

-BNi-
1, 2) (15)

denoting the displacement from the two sides of inter­
face (N  is the period number). Eqs. (9) and (10) can be 
written as [13]

M 1 UN1 = M2 Un2 • (16)
where
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M i =
cos 0 1L +

k 1 L sin 01T sin2 01L 
ki t cos 20 i t

— cos 01L +
k 1L sin 01T sin2 01L 

ki t cos 2 0 1 t
2 2 ik 1L(X 1 + 2^ 1cos 01L) + 2ik1Tp 1sin01Tsin0 1L ik 1L(X 1 + 2^ 1cos 01L) + 2ik1Tp 1sin01Tsin0 1L

M2 = cos0 2L -  cos02L 

ik 2Lk 2

2L 

ik 2L ̂ 2
are called dynamical matrix

for layers 1 and 2. Thus we obtain the relation of dis­
placements at the two interfaces of one period:

M 1UN1 = M 2 P 2 M -1M 1P 1 U(1 + n)1 

= (M 2G2 M 21 M 1G1M11) M 1 U(1 + N)1 (17)

= M M 1U(1 + n) 1,
where

For given structure parameters, Eq. (20) is only 
dependent on ю and kx, which determines the struc­
ture of band gap. For finite period structure, we can

deduce the transmission coefficient. Un = is the
LB0J

displacement on the incident interface between the air

0

and layer 1 and UN0 AN0

-BN0-
is the displacement on

the transmitted interface between the air and layer 2 . 
The relation between them is

G1
exp (- i k 1Ld 1cos 01L) 0

0 exp ( ik1Ld1cos 01L)

G2
exp (- ik 2Ld2cos 02L) 0

0 exp (ik2Ld2cos 02l)

and M  = M 2G2M 21M 1G1m 1 . According to the Bloch 
theory of periodic structure

U(1 + n)1 = exp( iKd) Um , (18)
where K  is Bloch wave vector. Thus Eq. (17) becomes 

M X  = exp ( -  iK d)X , (19)
where X  = M 1 U(N)1. Eq. (19) is an eigen equation of 
matrix. Because of |M =  1, the eigen values of Eq. (19) 
are exp(Kd) and exp(-iK d), respectively. Thus we have 

cos(K d) = [M( 1, 1) + M (2, 2)]/ 2. (20)
The condition that Eq. (20) has real solution is 

|cos(Kd)| < 1. Acoustic waves satisfying |cos(Kd)| < 1 
become transmitted wave forming transmission band, 
otherwise K  is imaginary number forming forbidden 
band and acoustic waves in the phononic crystal are 
the evanescent Bloch waves. In Fig. 1, acoustic wave is 
incident on the PC with angular frequency ю and inci­

dence angle 00L. The wave vector in the air k 0L = —
V0 L

has a component in the x  direction kx = ю sin00L
0L

which keeps invariant in each layer. According to kx 
we obtain the incidence angles in each layer:

00L = arccos 1 ---- x- , 0 1L = arccos 1 ----x- ,
k 0L k 1L

01T = arccos 1 ----x- , 02L = arccos 1 -----x-k2 
k1 T k 2L

2 2

2 2

-B 0

0 M01( M 1G1M11M2 G M  )n

x M0"^N0

-B N0-
= M N

AN0~

-BN0-

(21)

where M0
cos 00L -  cos 00L

ik 0Lk 0 ik 0L ̂ 0

M N = p f  (M 1G1M11M2G2 M21 )N. Because of BN0 =  0, 
the transmission coefficient is

AN0 1
Mn(1 ,1 )

(22)

3. CALCULATIONS AND M ODE ANALYSIS
For the structure model, we choose p0 =  1.29 kg/m3, 

p1 =  1180 kg/m 3, p2 =  1000 kg/m 3, v 0L =  330 m /s, 
v 1l =  2670 m /s, v 1t =  1120 m /s, v 2L =  1500 m /s, d1 =  
1 mm, d2 =  4 mm. Because the acoustic velocity in the 
air is very small, there are three modes:

(1) kx < k u , kx < k 2L (Mode I);
(2) kx > k u , kx < k2L (M ode II);
(3) kx > k u , kx > k2L (M ode III).
Mode I is a traditional transmission mode. The 

z  components of k 1L and k 2L are both real number. 
There are all propagating waves in all layers. The trans­
mission mechanism is the Bragg scatter of periodic 
structure or local resonances. Mode II is the same as 
those proposed in refs. [12—15]. The z  components of 
k1L and k 2L are complex num ber and real number, 
respectively. Thus the acoustic waves in layer 1and 
layer 2 are evanescent and propagating, respectively. In 
general, evanescent waves cannot propagate perpen­
dicularly to the interface. In current structure, the 
wavelength in each layer is larger than the layer’s 
thickness. Thus in the first structure period the field
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ю(2 nv0/d) 
1.0

Fig. 3. Band structure of the one-dimensional phononic 
crystal under different conditions.

U z , a.u. ю(2 n v 0/ d )
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Fig. 4. Transmission spectrum of the one-dimensional 
phononic crystal with single period for mode III in the first 
band (top plot) and distributions of displacement field cor­
responding to the peak frequency at top plot (bottom plot). 
The dotted line denotes the inner interface.

can reaches the last interface of the period and under­
goes reflection. The reflected field and the transmitted 
field take resonance at the interface between layers 1 
and 2 forming a resonant cavity. The energy of reso­
nance makes the evanescent waves penetrate into the 
next structure period and so on. Thus a resonance tun­
neling effect occurs. Mode III has not been reported 
and is the main subject of this paper. Because the 
Z components of k1L and k 2L are both complex number 
meaning that the waves in all layers are evanescent. O n 
this case, whether the acoustic waves can be transmit­
ted is dependent on the right side value of Eq. (20). 
Thus we make some calculations and the results are 
shown in Fig. 3. For comparison, we also take small 
values of kx. In all figures, the black part and the white 
part denote the transmission band and the prohibited 
band, respectively. Figure 3a is the whole band struc­
ture. For a definite kx, the lower transmission band is 
called Band 1 and the others are called Band 2 and 
Band 3. In Fig. 3b (kx < k1L, kx < k2L), the transmission 
band corresponds to Mode I which is totally within 
Band 3. In Fig. 3c (kx > k1L, kx < k2L), the transmission 
band corresponds to Mode II which are localized in 
Band 2 and Band 3, respectively. In Fig. 3d (kx > k1L, 
kx > k2L), the transmission band corresponds to 
Mode III which are localized in Band 1 and Band 2, 
respectively. Figure 3d shows that transmission bands 
still occur even if the waves in all layers are evanescent.

This is a new transmission mode. Before we study the 
transmission mechanism of Mode III, we study the 
transmission spectra and the distributions of displace­
m ent field of Mode III for finite 1D  PC. Although 
Fig. 3 is based on infinite structure, the transmission 
spectra for finite period num ber are still in agreement 
with those of Fig. 3.

Without loss of generality, we choose kx =  0.4 я /d . 
Firstly, we consider the structure with a single period. 
Figure 4 (top plot) shows the transmission spectrum of 
Mode III in Band 1. A perfect transmission peak 
occurs within a wide gap background. Here we give the 
reasons that the forming of the peak. The evanescent 
field can penetrate from the front interface to the back 
interface of the structure because the wavelength in the 
structure is m uch larger than the thickness of each 
layer. The differences of the impedances (pv) among 
matrix material and the material in phononic crystal 
are very big, which results in intense reflection on both 
the front interface to the back interface. The forward 
evanescent field and backward evanescent field meet 
at the inner interface. A resonance occurs at the m id­
dle interface because there is no phase change for eva­
nescent fields. Figure 4 (bottom plot) shows the distri­
butions of displacement field corresponding to the 
peak frequency at top plot (bottom plot). It is clear 
that the displacement field has the maximum value at 
the inner interface, which verifies our above analysis.
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N  = 2 N  = 3

Fig. 5. Transmission spectrum of the one-dimensional phononic crystal with different periods for kx = 0.4%/d in the first band. 
(®2 _i = 0.29298(2nv0/d), ®3 -2 = 0.34618(2nv0/d), ®4 _ 3  = 0.3838(2nv0/d), ®5 -4 = 0.40346(2nv0/d).

Figure 5 further shows the dependence of the trans­
mission coefficient on the angular frequency for 
Mode III in Band 1. The transmission spectra have 
following features.

First, the transmission band consists of N  discrete 
narrow perfect peaks. It is similar to the transmission 
band for Mode II in [12—15], in which there are N  — 1 
discrete narrow peaks. It is totally different from the 
transmission band of Mode I in traditional 1D PC in 
which the transmission band consists of some m ini­
bands and mini-gaps.

Second, the intervals among the peaks are differ­
ent. The larger the frequency, the larger the intervals.

Third, the positions of the peaks at the right outside 
in each sub-plot are all the same. The peaks at the right 
outside are close to the up edge of Band 1 insensitive to 
the num ber of period and have peak values smaller 
than 1. For Mode II with odd peak number, the posi­
tion of the middle peak keeps invariant [12, 13, 15].

Fourth, except the outside peak, all transmission 
peaks have unit peak value. All the positions of these 
peaks are dependent on N . The peak position 
for the peak &N-i (N  is the period number, i denotes 
the ith peak from the left) keeps invariant when N  
increases with integral times. For example, the peak 
position for ©2—i keeps invariant when N  =  4, 6, 8, ...,

or the peak position for ю4-1 keeps invariant when N = 
4, 8, 12, ... .

Figure 6 shows the transmission spectra within 
Band 2 for kx =  0.4 п/ d  and different N. Because 
Band 2 includes Mode II and Mode III, the transmis­
sion peaks in it are within to different transmssion 
modes. The left group is within Mode III and the right 
group is within Mode II. The total number o f peaks is 
N  -  1.

Figure 7 shows the distributions of displacement 
field corresponding to different peak frequencies 
(pointed by arrows) in Fig. 5 with N  =  20 and d  =  
5 mm. The amplitude of incident wave is assumed as 1 
with no dimension. All the field distributions take on 
the clear characteristics of Bloch waves, that is, they 
change periodically. For peaks ю2-1, ю3-2, ю4-3 and 
ю5-4, the periods of fields are 2d, 3d, 4d and 5d, 
respectively. Such result is similar to that of Mode II 
which can be explained through effective Bloch wave 
vector [12]. The feature of field distribution also illus­
trates that the position of peak N  — i keeps invariant 
when N  increases with integral times. We also notice 
that the maximum value of field is always located at the 
interface which is just the result of local resonance at 
the interface.

The transmission spectra and field distributions 
illustrate that the transmission mechanism of current
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Fig. 6. Transmission spectrum of the one-dimensional phononic crystal with different periods for kx = 0.4n/d in Band 2. 
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Fig. 7. Distributions of displacement field corresponding to different peak frequencies in Fig. 5 with d = 5 mm.
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1D PC is attributed to both the effects of Bragg scatter 
and local resonance. As mentioned above, a single 
period can form the mode of local resonance. For 
structure with multiple periods, these local resonance 
modes are coupled through evanescent field. The cou­
pling makes the single local resonance mode split and 
forms the band. The position of the band is deter­
mined by Fig. 3. According to the classical wave ana­
log of the tight-binding (TB) model, a single local res­
onance mode is split into N  modes. If the coupling is 
weaker, the N  modes form a successive band, other­
wise form a discrete band. The result in this study cor­
responds to the latter. The resonant unit for M ode III 
is different from that for Mode II introduced in Refs. 
[12—16]. The resonance unit for Mode II is achieved 
through standing wave resonance within one layer of 
the structure period. The maximum value of field is 
always located within the layer. The resonance unit for 
Mode III is achieved through the resonance of evanes­
cent waves in the whole period. The maximum value of 
field is located at the interface. Because the resonance 
unit for Mode II must satisfy the resonant condition of 
standing waves, the wavelength should be the same 
order as the thickness of media layer. However, the 
wavelength for Mode III can be m uch larger than the 
length of the resonance unit. For example, the wave­
lengths in layers 1 and 2 for peak ю2-1 = 
0.29298(2nv0/d ) are 138.07 m m  and 77.57 mm, 
respectively, which are m uch larger than the period 
length 5 mm. The classical waves can be still transmit­
ted in Mode III through one-dimensional photonic 
crystal [17]. In ref. [17], the electromagnetic waves are 
transmitted along the normal direction through the 
coupling of evanescent waves in one-dimensional 
photonic crystal.

All the results show that 1D PC takes on some spe­
cial properties when acoustic waves propagate in it in 
Mode III. Its comb discrete channels are not limited 
to the num ber o f periods. Only single period can 
achieve one filtering channel with high Q values, while 
for traditional 1D PC, only with enough period num ­
ber can it achieve filtering channels. For Mode III the 
period length can be m uch smaller than wavelength, 
which means that the structure with small size can 
control the large wavelength.

4. CONCLUSIONS
We have deduced the band structure of 1D PC 

through the basic equations of acoustic waves and 
boundary conditions. We find a new kind of transmis­
sion mechanism for 1D PC called the coupling of total 
evanescent waves. Through calculating the transmis­
sion spectra and the field distributions, we analyze the 
physical mechanism and conclude its special proper­
ties for such mechanism. Our study may extend the 
theoretical and application domain of 1D PC.
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