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Abstract—The difference between strong and weak nonlinear systems is discussed. A classification of strong
nonlinearities is given. It is based on the divergence or inanity of series expansions of the equation of state
commonly used in the study of weak nonlinear phenomena. Such power or functional series cannot be used
in three cases: (i) if the equation of state contains a singularity; (ii) if the series diverges for strong distur-
bances; (iii) if the linear term is absent, and higher nonlinearity dominates. Strong nonlinearities are known
in acoustics, optics, mechanics and in quantum field theory. Mathematical models, solutions and observed
phenomena are presented. For example, an equation of Heisenberg type and its generalization for strongly
nonlinear wave system are given. In particular, exact solutions of new “quadratically cubic” Burgers and Rie-

mann—Hopf equations are discovered.
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INTRODUCTION

A modern trend in physics is the increasing interest
in strongly nonlinear wave (SNW) dynamics. It is gen-
erated by the physics of high density of energy, extreme
states of matter, and astrophysics, as well as by new
experiments in laser physics and explosive waves con-
nected with high energy localization.

Up to now, mainly weak waves have been studied.
Even weakly nonlinear waves (WNW) can demon-
strate strongly displayed nonlinear phenomena. For
example, nonlinear optics deals with laser fields whose
strength is much smaller than the intra-atomic field:
E<E ~e/r, ~101V/m (here r, is the Bohr radius).
Nevertheless, effects of weak nonlinearity accumulate
with time (within many periods of vibrations) or with
distance traveled (within many wavelengths) and ini-
tiate strongly expressed effects. For instance, the wave
energy can almost completely spill over from one fre-
quency wave to another (second harmonic generation,
parametric amplification). Formation of solitons and
self-focusing of beams are also results of weak nonlin-
earity.

In strong fields, ¥ ~ F,;, nonlinear transforma-
tions happen rapidly over a short time, or within a

I The article is published in the original.

short distance. Irreversible changes take place in the
medium right up to its destruction. But even high-
intensity laser waves will be weak at propagation in
vacuum. Only a wave with the strength £ ~ Ep - ~

m?c3Jeh, ~ 10" V/m, is strong here because it can alter
the vacuum itself and create electron—positron pairs.

By analogy, one may distinguish between SN'W and
WNW in acoustics. When a shock front appears at a
distance of 10°—10° wavelengths in a liquid, nonlin-
earity is weak but strongly expressed. The acoustic
pressure is here 10°—10° Pa, much less than the inter-
nal pressure of 10° Pa. Typical strongly expressed
effects of weak acoustic nonlinearity are: the transfor-
mation of a smooth single pulse to a triangular looking
profile with a leading shock front; the transformation
of an initially harmonic wave to a saw-tooth-shaped
wave containing one shock per period.

A different case occurs if there are impurities (cav-
itation embryos) in water. The cavitation resistance
falls down, and the acoustic wave can at low pressures
break the liquid and create bubbles. An explosive wave
is also strongly nonlinear. It destroys the medium. At
nuclear explosions even new chemical elements can
appear. Extreme states of matter are realized in white
dwarfs, neutron stars and in black holes as result of
gravitation collapse and accretion. A wave initiating an
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inert-less phase transition can also be considered as a
SNW.

It is necessary to answer the question: when the
wave is said to be weak or strong— it is in comparison
with what? If the wave or its parameters (spectrum,
shape, other characteristics) is compared with its own
at the initial moment of time, and a big difference in
the parameters is observed, one can point to a WNW.
Ifthe wave field is compared with a typical magnitude
ofthe same field inside the medium and these magni-
tudes are close one to another, one can point to a
SNW.

In the study of WNW, the equation of state (or
determining equation) can be expanded in a power or
functional series. The expansion ofthe adiabatic equa-
tion ofstate in powers of density p' and pressurep’ dis-
turbances in the vicinity of equilibrium state (p0, p0)
can be one example:

P' = Po pO+cOp0

PO

3
-+t Yz) 2+ (y-i)(y-2Ye 4
pO 2 ’ 6 ~ed

Here y = cp/cvis the ratio of the thermal capacities,

X

c2 = YPo/Po is the square of the sound velocity. The
expansion (1) in powers of the small quantity p'/p0is
commonly used in nonlinear acoustics [1]. The sec-
ond term inside the brackets (1) is related to quadratic
nonlinearity, while the third term is related to a cubic
one.

Another expansion ofpolarization vector in powers
of ratio of external electric and intra-atomic field is
used in nonlinear optics [2]:

L] |R
P = Jk(€)E(t- t)dx+ LU x@(tlT2
0 00

XE (t- TDE (t- T1- T2)d%i%2 + JJJX(S)(tL 2, T3)(2)

000
xE (t- t)E(t- T1- €2)E (t- T1- T2- t3)dtldx2dt3

Here k(t) is the tensor of linear polarization,

and x(2), x(3 are tensors of quadratic and cubic non-
linearities.

A similar Frechet representation of the series by a
multiple integral generalizing the Taylor series was
used as far back as by Volterra in his theory ofheredi-
tary elasticity [3].

However, such expansions cannot be used in three

cases. First, if the determining equation p(p), P(E)
contains a singularity, like for “clapping” and for
Hertz nonlinearities of heterogeneous solids [4], as
well as for nonlinearity ofvibrant-impact systems [5].
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Fig. 1 Vibration in potential well with singularity at x = .

Secondly, ifthe series expansions (1), (2) are divergent
for very strong fields [6]. Thirdly, if the linear term is
absentand highernonlinearities dominate. Such non-
linearities are known in quantum field theory [7] and
in mechanics [8].

Examples are given below of nonlinear vibration
and wave systems ofthe first, second and third kinds.

EXAMPLES OF 3 TYPES OF VIBRATION
SYSTEMS

A. Example ofStrong Nonlinearity ofthe 1st Type:
there is a Singularity

Let us consider an anharmonic oscillator with a
“module-like” potential:

md% o QY G kkox], ®8= Kx0. (3)
dt dx m

The “module-like” well (curve 2 in Fig. 1) isshown by
two rays. It is similar to the parabolic well of a har-
monic oscillator (curve 1). The solution here is even
simpler than that to the linear problem. It can be
described by simple quadratic functions oftime:

1 2
= a- -(w0t- V2A), o <®ot<2]2A,
L 4)
X = -(w0t+ JIA) - A, -iJIA <®0t<o0.

The spectral expansion of this solution is given by the
series:

)}
WA X me,, S0 Miom +,) &0 (5)

- u2 2 A -1
I=0

There are only odd harmonics, whose amplitudes

are ~A. The period increases as V2A. With decrease in
amplitude A the point mass goes down to the bottom
of well, and approaches the singular point. Conse-
quently, there is no limiting transition to the linear
problem at small amplitudes when A ~ 0.
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Fig. 3. Stable shock front of compression in a quadratically
cubic medium forI" = 1; 0.2.
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Fig. 4. Distortion of SNW described by the model (18),
(19).

B. Example of Strong Nonlinearity of the 2" Type:
the Divergence of Series for Strong Vibrations

Consider the anharmonic oscillator
d’x wox
The singularity appears here at [x| — a. At small dis-

placements |x| <€ a, the behavior is like that of a har-
monic oscillator. The energy integral is:

2
=) v a-ion), X = c= o )
T a

At |X] < 1, the energy takes a simple quadratic form. At
large displacements |[X] > 1, the vibrating mass “disap-
pears” in the space of real coordinates and moments.

= 0. (6)

C. Example of Strong Nonlinearity of the 3 Type:
there is No Linear Térm in the Series Expansion

Let us consider the Duffing equation:
d’x 2 X
—2+030x1+—2 :O, (8)
dt a

where the linear term (the unity) in parenthesis is
omitted. This equation

2
X ¥ -0, x=% 1= oy )
dt’ a

was considered before in quantum [7] and classical [8]

physics. Its solution can be expressed through Jacobi

elliptic functions. The solution and Fourier expansion

of the odd harmonics are:

X _ 1 _TX(1/4) 1
a—Asd(AQ)OqQ, T= TQ\)—Q[4 (10)
g iy 126753/2 GG
r’(1/4) = (an
exp(—n(m—1/2)) . N1
o Cantn | (2 Ve /4)A°°°’}'

The models listed above describe real systems. The
I8t type oscillator (3) describes vibrations of the force
field, which is homogeneous in both half-spaces, but
changes its direction at the transition through x = 0.
Such motion is realized near a plane-parallel plate
creating homogeneous gravity. If a small orifice is
drilled in the plate, the point mass will be attracted to
the other side of plate when passing the orifice.

The system of 2™ type (6) has a potential well in the
region — 1 < X < 1. If the well is restricted by reflecting
walls, the motion will be concentrated inside this area.
If the potential is put to zero at |[X] > 1, two barriers
appear at the well edges. A particle with large enough
energy really leaves the well and “disappears”.
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The simplest system of the 3™ kind is shown in
Fig. 5. There is a constraint: the mass can slide only
along a guide bar. The spring is linear. It is unstretched
in equilibrium. The equation of motion of the mass
coincides with Eq. (9).

EXAMPLES OF THREE TYPES
OF WAVE SYSTEMS

A. Wave System of the I¥ Type: there is a Singularity

A cubic nonlinear medium for strong waves has the
following equation of state: u/uy, = B(p/p,)*. Letu, pbe
the vibration velocity and pressure. It is convenient to
approximate this cubic function by two branches of a
quadratic parabola: u/u, = Blp/pol(p/p,). In many cases
it is adequate for real wave systems, and sometimes this
model is convenient for qualitative physical analysis.

Plane waves in such “quadratically cubic” systems
are described by the equation of Riemann—Hopf type.
The solution for the given initial profile ®(t) at the
border z = 0 of the medium is determined by the
implicit function:

ou _ E|Lt|6—u—>u = ®(1+E2|u|z).

12
oz ¢l ot el (12

For an initial harmonic wave, its spectrum contains a
Fourier expansion in odd harmonics:

u = 1Y C(Dsin(not+ 0,2),

n=1 (13)
Z==X = %wuoz.

s

= [1-(-1)12

<[(2-E02) +s0n)] "

(2/mn) —E,(nZ)
JnZ)
Here J,, E, are the Bessel and Weber functions.

It is interesting to construct the solution to (12) for
the distances where the wave contains shocks. Looking
for a solution in the form u = AQ)P(T — T45(2)), where
the function tg;(z) describes the motion of shock, and

the function ®(1) the quasi-stable shapes of smooth
sections of wave profile, we find:

A(z) =

tang, =

U
, o(t—1e5(0))+C
o O (@)

(14)
= 0[] + Z®], @tyu(e) = ~In(1+ ),
o
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Fig. 5. Chain of masses demonstrating strongly nonlinear
behavior.

here Z, =z,/zsy= (B/ cé) oU,Z,. Byplacing the shocks
in the profile, we construct the periodic wave shown in
Fig. 2. The “teeth” have a trapezoidal form, as distinct
from the usual triangular “saw” in quadratic medium
[1, 9]. Each period contains two shocks: one compres-
sion and one rarefaction. The last type does not exist
in quadratic media.

To describe the shock structure, the quadratically
cubic analogue of Burgers equation must be solved:

ov _ 10
—(INP) +
7 2
07 00 (15)
V=£,9=(D’C,Z=i.
U sy

This remarkable equation can be reduced to a linear
form and solved exactly.

One of the principal exact solutions describes a sta-
ble compression shock:

V= ocz(e*

—90) |:1 _a(e*—eo)}l’
2T 2T
—0<8,<0; V= oc|:1 + ﬁtanh(ocﬁg—l’iﬂ,

0, <0, <oo.

(fZ-1), 0/2r =

x arctan(«/2/2), 0.= 0(t — T54(2))-
The shape of shock front (16) is shown in Fig.3 for

two different values of the parameter [". By analogy, the
rarefaction front can be calculated.

(16)

Here: o

—(0a2)"

B. Wave System of the 2" Type: there is a Divergence
Jor Strong Disturbances

One system of such type is well-known [9]. It is the
Earnshow equation describing (in Lagrangian repre-
sentation) the 1D motion of a compressive gas:
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2 -(r+ 172
oc - c§(1+a—§) oc (17)
or 0 ox

Here & is the displacement. The weak nonlinearity
corresponds to a small Mach number, or small strain
|0€/0x| < 1. If only the main quadratic nonlinearity is
kept, the simplified equation takes into account only
weak nonlinearity but can describe strongly expressed
accumulated nonlinear phenomena which are studied
well.

Therefore, it is interesting to draw attention to
SNW, when strain is comparable with unity. One can
see, that at large negative strain, 0¢/0x < —1, a singu-
larity appears in equation (17). It corresponds to a
medium discontinuity. Real fluids contain impurities
and breaks at much weaker rarefactions.

Equation (17) can be solved analytically. For sim-
plicity it can be rewritten as

o'V a( 10 o
¢r- 9 ) v=1+%, 1=¢y. (18
ot?  Ox\pr+lox o TTO (18)

One can check that the solution of the following 1%
order equation

oy, 1aov _ r+l
ot pFEox 2
will also satisfy (18). In particular, one solution is the
implicit function: V= ®(x — V41). The nonlinear dis-
tortion of an initial wave with 2 subsequent triangular
pulses is shown in Fig. 4.

The singularity appears quickly at 0¢/0x — —1,
V — 0, when the medium breaks.

Equation (19) has many solutions with singularities.
One of the stationary solutions is: V= C(x — x,) /7.

Singular solutions are known also for “standard
equations” in the theory of WNW. For example, the
usual Burgers equation has such singular solutions:

2
OV, OV _ OV, o
or  0x ox* X — X,

0, ¢ = (19)

(20)

V = —tant—20,
2r
The behavior of singularities shows particle—like
properties. They are stable and can interact with each
other. Korteweg—de Vries and many other well-known
equations have similar solutions. It is often supposed
that singular solutions have no physical meaning.
Nevertheless, it is interesting to understand how a sin-
gularity forms and what phenomena that can cancel it.

C. Wave System of the 3 Type: there is No Linear Term

Consider a chain of masses. Each moves along a
parallel bar placed at the same distance a from one
another (see Fig. 5). It is the generalization of the sin-
gle oscillator (9) for spatially distributed system [8]. If
in equilibrium state all springs are un-tensed, the lin-
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ear regime does not exist. Nonlinearity completely
determines the motion even at infinitesimally small
amplitudes. Such vibrations can evidently be consid-
ered as strongly nonlinear, and analytical perturbation
methods based on proximity to linear system are not
applicable. One needs exact or numerical solutions.
Because the stiffness coefficient k£ of the spring is a
constant, the “physical” nonlinearity is absent here.
This nonlinearity can be named as “geometrical”, by
analogy with nonlinear acoustics.

The equation of motion of a mass of number # in
the chain is:

dzx,, k
dr - _2_0[(3‘” _xn—1)3 G —xn)3].

2y

In the continuum approximation, putting x, = x(z),
X, 1=x(z+a),x,_,=x(z—a),a <A, onecanreduce
the differential —difference equation (21) to a nonlin-
ear partial differential equation:

o’c B . _ox o _ 3k 2
o et P

- o7 2m
Interestingly, equation (22) has a solution describ-
ing standing waves, but traveling waves appear only for
springs which are tensed in equilibrium. The propaga-
tion velocity increases with increase in tension.

(22)

Equation (22) has remarkable properties. First, it
permits the separation of variables. Second, it can be
reduced to a linear form using new independent vari-
ables:

=2 ¢=% =10, 2= Zn.0. @3)
ot 0z
The corresponding linear equation reads:
2 2
2L el 4)
og on

Third, its solutions can be found by solving the 15—
order equation:

¢ _ oG
7 +/BI| >

which differs only in notations from equation (12)
considered above.

(25)

When testing experimentally the strongly nonlinear
vibrations of the chain in Fig. 5, the friction between
masses and guiding bars must be minimized. This was
performed through a chain of rotating disks which are
described by the same equations [8]. The springs are,
as before, governed by the linear Hooke’s law. A photo
of the disks and corresponding scheme are shown in
Fig. 6.

Experiments with the chain shown in Fig. 6 dem-
onstrated some peculiar properties of strongly nonlin-
ear dynamics [8].

No. 6

ACOUSTICAL PHYSICS Vol. 59 2013



STRONG AND WEAK NONLINEAR DYNAMICS

649

Fig. 6. The chain of disks performing strongly nonlinear torsion vibrations.

STRONG NONLINEARITY
AND LOCALIZATION

SNW is associated with localization of energy. This
is in turn connected to spatial and temporal focusing,
collapse and cumulation.

Significant localization happens when a steam/gas
bubble in a liquid collapses. The light radiated by the
air bubble collapsing in water under influence of sound
(sonoluminescence) was discovered in 1934 [10]. The
sonoluminescence of a single bubble in the focal area
of an ultrasonic transducer was observed in 1992 [11].
According to estimations, the temperature of plasma
in bubbles was of order of 25000 K. By increasing the
initial radius of the bubble and reaching the ideal
spherical symmetry of collapse, it is possible to achieve
an even greater increase in temperature and pressure.
However, the true limit of such localization is still
unknown [12, 13].

Increase in energy density usually happens in
stages. The growth at each stage is limited by nonlinear
saturation or by instability. This idea was formulated
by Zababakhin as “Hypothesis of instability of cumu-
lation” (1965): “Each unlimited cumulation is unsta-
ble; instability not only modifies it, but eliminates it
completely (is transformed to limited cumula-
tion)...This is an intuitive idea” [13].

Consider, for example, how one can accumulate
high density of energy and create SNW in an acoustic
resonator. In the first stage it is necessary to increase
the Q-factor of the resonator. Because ( is the ratio of
the amplitude of vibration inside the resonator and the
amplitude of vibration of the external source of energy,
at O > 1 the internal vibration can be amplified many
times. The “World record” now equals approximately
O~ 10°[14]. At Q > 1 nonlinear phenomena are more
pronounced. However, nonlinear steepening leads to
shock formation and to nonlinear absorption. Conse-
quently, the Q-factor falls down dramatically.

No. 6
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At the second stage, the shock wave formation has
to be suppressed in order to increase the energy. At
least 3 methods are known for that [14]. (i) One can
artificially introduce phase shifts between harmonics.
It is possible, for example, to make a wall with a fre-
quency dependent reflection coefficient. Discrepan-
cies between the phased harmonics forming the shock
front disperse the front and decrease the nonlinear
losses. (ii) Phase shifts can be introduced using a com-
plicated shape of the cavity. It can be conical,
bulbous or similar. In gas-filled cavities, an acoustic
pressure of several atmospheres was created. (iii) The
third method uses selective absorbers for the 2" har-
monics. In one experiment, one wall was transparent
for the 2" harmonics but reflected the fundamental
frequency wave. Shocks could not form and the Q-fac-
tor increased.

Consequently, several methods exist to stop both
linear and nonlinear losses and increase the Q-factor
and internal energy.

The third stage is next. When the shock front for-
mation has been stopped, the boundary nonlinearity
caused by the displacement of a movable wall starts to
play a determining role. To continue to pump energy
into the resonator, one has to modify the vibration of
the boundary. At weakly expressed nonlinearity the law
must be harmonic, but at strongly expressed nonlin-
earity the wall must perform short and phased “jerks”.

The fourth stage. If we have been able to overcome
both shock formation and boundary nonlinearity, we
could meet a new nonlinear phenomena at further
pumping of energy, or the medium will be destroyed. A
more detailed description of high-power waves in res-
onators is given in [14], Ch.11.

Corresponding stages can be found in cubic reso-
nators, at strong focusing of wave beams, at forming of
extremely strong laser fields, and in other problems
connected with SNW.
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CONCLUSIONS

Results given above were preliminarily discussed
during Scientific school “Nonlinear Waves—2012”
{Nizhni Novgorod [15]) and Internatiomal Congress
on Acoustics (Montreal, Canada [16]). These results
are connected with the problem of quadratically cubic
nonlinear systems described in review [17]. Following
conclusions can be drawn:

—1It is expedient to distinguish between strongly
nonlinear waves (SNW) and waves with strongly
expressed weak nonlinearity (WNW).

—The SNW have been studied much less than
WNW,

— It is interesting to analyze new nonlinear models
and the new physical phenomena of strong wave fields.

—The creation of SNW is connected with the
problem of nonlinear localization of energy. The
increase in energy and matter density during localiza-
tion usually consists of several stages bounded by non-
linear saturation or by the development of an instabil-

ity.
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