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Abstract—In the modal description of sound propagation, signal distortion is caused primarily by dispersion,
which is largely controlled by the product I(m; )B(m; f). Here m is mode number, fis acoustic frequency, [ is
the action and P is the waveguide invariant. A modal pulse with fixed m and variable fthat satisties I = 0 over
the entire frequency band is referred to in this letter as a weakly dispersive modal pulse. The manner by which
weakly dispersive modal pulses can be exploited in underwater communications applications is described and
illustrated. The connection between weakly dispersive modal pulses and weakly divergent beams is discussed.
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Acoustic transmission of information in the ocean
over horizontal distances greater than the ocean depth
is challenging because propagation effects distort the
transmitted signal. The usual method of overcoming
signal distortion is to perform some form of channel
equalization, which requires knowledge of the impulse
response function of the ocean sound channel. In the
ray and mode descriptions of sound propagation, sig-
nal distortion is associated with multipathing and dis-
persion, respectively. In this letter attention is focused
on the modal description. Modal dispersion is largely
controlled by the product I(m; f)B(m; f). Here m is
mode number, f'is acoustic frequency, / is the action
and [3 is the waveguide invariant. In this letter a collec-
tion of modes with fixed m and variable f (typically
Jo/Af = 4) that satisfy I = 0 is referred to as a weakly
dispersive modal pulse. It is shown, using a combina-
tion of theoretical arguments and deep water simula-
tions, that weakly dispersive modal pulses can be
exploited to transmit information in a sound channel
without performing channel equalization. The con-
nection between weakly dispersive modal pulses and
weakly divergent beams is briefly discussed.

We focus in this letter on communications applica-
tions of mode-processed transient wavefields (see also
[1]). Specifically, we consider broadband distributions
of energy with fixed mode number. Distributions of
this type are referred to in this letter as modal pulses.
Note that nonzero bandwidth is essential in commu-
nication applications as the information content in
any sensibly coded signal increases with increasing

I The article is published in the original.

bandwidth. Much of the discussion in this letter is
motivated by consideration of transmission of a com-
munications signal consisting of a phase-modulated
binary sequence in which each bit consists of a small
number n, of cycles of some carrier frequency; note
that f,/Af = n,. Such a sequence of bits undergoes neg-
ligible propagation-induced distortion if and only if
each bit undergoes negligible propagation-induced
distortion. For this reason we focus throughout this
letter on the propagation-induced distortion of a sin-
gle bit. After performing the requisite mode-process-
ing, the resulting wavefield can be thought of and
described as a dispersive wavetrain that, in addition, is
subject to scattering effects.

We begin by illustrating the important role of the
waveguide invariant 3 in controlling the dispersion-
induced distortion as a function of range of such a dis-
persive wavetrain. Consider sound propagation in a
stratified environment whose density is constant;
¢ =c(7), where ¢ is sound speed and z is depth. Follow-
ing [2] we define the waveguide invariant as

Blmsf) = — 2, (1)
oS,

Here S,(m; f) = dk/dw is the group slowness where
k is the radial wavenumber, and o = 27f’is the acoustic
wave radian frequency; 8, = k/w is the phase slowness.
The waveguide invariant was originally introduced [3,
4] as the inverse of B defined in Eq. (1). Both defini-
tions of B are now commonly used. For our purposes
Eq. (1) is most convenient. Also, in [4] B is defined
using differences in S, and §, between neighboring
mode numbers. The differential form of the definition
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Fig. 1. Evolution in range # of idealized single-bit dispersive wavetrains with = —0.5 (left), p = 0 (center), and f = 0.5 (right).
In all three cases the single-bit wavetrain at # = 0 corresponds to three cycles of a 75 Hz carrier under a tapered envelope. Other
parameters that were used in the simulations shown are described in the text.

of B can be thought of as a high frequency asymptotic
approximation to the difference-based definition. Our
use of an asymptotically valid definition of 3 is consis-
tent with the asymptotic analysis that is used through-
out this paper.

Assume, for now, that m is fixed and that B is con-
stant over the frequency band of interest, centered on
Jo = oy/(2rn). Then, integrating Eq. (1) gives
dk/dw = S, +B(ky/wy—k/®), where ky = k(w,)

and S,y = (dk/dw)(w,). Asecond integration yields

k(o) = ko(%))ﬁ oa[l—(%))ﬁﬂ} )
for =—1, and

k(w) = ko(o%) + (Sgo - g)mln((%), (3)

0 0

+ SgO + Bky/ o,

B+1

for B = —1. For the special case = 0, k(w) = ky +
Seo(® — wp) and 8, = dk/dw = S.

Figure 1 shows the evolution in range of three dis-
persive wavetrains corresponding to B = —0.5, B =0,
and B = 0.5. These wavetrains are defined by the Fou-
rier integral

Pu(r 1) = J-A((o)ei(p(r)ei(k(w)rfm)doo. )

In this expression the subscript m in p,(r, {) is
included to emphasize that mode number is assumed
to be fixed. (One could also include a subscript m on
k(w)in Egs. (2—4), i.e., write k,,(®) to account for the

dependence of § on m. To keep the notation simple,
we have not done so). In the simulations shown in

Fig. 1, A(®w) was chosen so that J-A( oo)eiiwtd(o is equal

to three cycles of cos(wyf), centered at f = 0, under a
cosine squared envelope with zeros at the pulse start
and end times. Here o, = 2n(75 Hz); other parameters
used in the simulations were ky/wy = S, = 0.665 s/km
and S,, = 0.667 s/km. The phase correction @(r) =
®0(Sy — Syo)r is required to prevent loss of carrier fre-
quency phase information when B = 0 and the refer-
ence group and phase slownesses are unequal. (With-
out the factor €@ there is no dispersion-induced
pulse broadening when § = 0, but the phase under the
envelope slowly drifts with increasing r if Sy # S,. As
a result, the information encoded in the phase of the
carrier will be lost if the phase correction factor is not
included.) When evaluating the integral (4) at each r,
the entire integrand at each negative frequency was set
equal to the complex conjugate of the integrand at the
corresponding positive frequency. Figure 1 shows that
when § = £0.5 the single-bit wavetrain undergoes sig-
nificant dispersion-induced broadening that increases
with increasing range, but when [§ = 0 there is no dis-
persion-induced broadening. When [ is not close to
zero, neighboring bits will bleed into each other,
resulting in loss of phase information encoded in each
bit. It is clear from these observations that conditions
are favorable for underwater communications applica-
tions using modal pulses only when [} is near zero.
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The foregoing discussion illustrates the importance
of dispersion-induced degradation of a modal pulse
and the role of B in quantifying that effect. We consider
now a more quantitative description of propagation-
induced degradation of modal pulses, including both
dispersion and scattering effects. References [5—7]
considered the temporal spreading of modal pulses in
environments consisting of a range-independent
background sound speed profile on which a range—
and depth-dependent perturbation, due, for example,
to internal waves, is superimposed. It was shown that
there are three contributions to modal pulse time
spreads, and that these combine approximately in

quadrature, At,, = A/Atiw + Atfl + Atf. Here Az, is the

total temporal spread of the modal pulse, Az, is the
reciprocal bandwidth of the modal pulse, A7, is the dis-
persive contribution to the pulse spread, and A is the
scattering contribution to the pulse spread. At r = 0
both Az, and At vanish, so A7,,(r = 0) = Ay, Al
should thus be thought as the minimal, bandwidth-
dependent, width of the modal pulse. A7, is the dura-
tion of a single bit of the transmitted communications
signal; that term will not be further discussed. In Ref.
[6] it is shown that Az, = 1/Af,

= 1. VBU)
At; = 27:f0 R Ir, (5)
and
(B2 | 32
ar, = 4n(%) %%r . ©)

Here 7is the classical action (see, e.g., [8]), and R(J) is
the range double loop distance of a ray or mode whose
action is /. A quantization condition relates the action
to the acoustic frequency and mode number. Asymp-
totically, for modes with two internal turning points,
appropriate for describing usual deep ocean condi-
tions, the quantization conditionisw/=m + 1/2, m =
0, 1, 2,.... The quantization condition allows depen-
dence on I to be traded for dependence on frequency
and mode number in the above expressions. Variations
in R(I) in typical deep ocean environments are quite
small. With this in mind, consistent with Eq. (5), we
define a weakly dispersive group of modes as one for
which B/ = 0.

A direct argument leading to the conclusion that
dispersive spreading is controlled by B/ follows from
consideration of the decompression coefficient, y =
0%’k/dw?* (partial derivatives are evaluated here at fixed
mode number). The phase slowness §, = k/® is quan-

tized, S, = §,,, via the quantization condition with

(Sy) = m) (e (2) = 5,,,) "de. Note that S, =

Ok/dw and B = —05,/0S, gives v = —B/(0w/0S,,,).
Finally, 0w/0S,,, = (0w/0INdl/dS,,) = (—o/D(=RU)/
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(2m)), so y = —BI/(fR(I)). The same combination of
terms appears in Eq. (5).

Consider now the scattering-induced modal
pulse spreading term, Af,, described by Eq. (6). The
quantity B in that expression is the action diffusivity;
owing to scattering by small-scale ocean structure,
mean-square spreads in action grow like Br. The argu-
ments leading to Eq. (6) require modification for near-
axial (small  or low m) modes in deep ocean environ-
ments; those modes are scattered less strongly than is
suggested by Eq. (6). Unfortunately, the extended the-
ory [7—10] does not lead to a simple analytical expres-
sion for Az,. The dependence on |B(/)|in Eq. (6) carries
over to the extended theory, however. With these com-
ments in mind, it is seen that the scattering-induced
time spread for a weakly dispersive modal pulse, for
which B/ = 0, is expected to be small.

In practice there are two classes of modes that sat-
isfy our definition of a weakly dispersive modal pulse.
First is the m = 0 (near-axial) modal pulse. That modal
pulse has very small 7 (equal to (2w)! at each fre-
quency). Additionally, in any smooth single-mini-
mum sound speed profile B — 0 as / — 0, so the
smallness of / for these modes implies smallness of 3.
Because [}/ is small for this modal pulse At is small by
Eq. (5). The m = 0 modal pulse exhibits small scatter-
ing-induced time spreads for several reasons: 1—the
smallness of [} (recall Eq. (6)); 2—the near-axial cor-
rection to Eq. (6) that we mentioned; and 3—because
near-axial sound speed fluctuations are generally
much weaker than upper ocean sound speed fluctua-
tions. (Dependence on scattering strength in Eq. (6)
enters through the action diffusivity B). The second
class of modes that satisfy our weakly dispersive defini-
tion are modes with nonzero m for which [(m; f;) = 0.
Equations (5) and (6) reveal that such modes exhibit
both small dispersive spreading and small scattering-
induced spreading. Note that because B(m; f;) is a dis-
cretely sampled function, it is generally not possible to
satisfy the condition B(m; f;) = 0. Typically, for the m
that is chosen, there are some frequencies in the
excited band for which < 0, one frequency—usually
not the carrier—for which f§ = 0, and some frequen-
cies forwhich 3 > 0. It is not possible in general to sat-
isfy the condition B = 0 over the entire excited fre-
quency band; the best that one can do is to include a
zero-crossing in the excited frequency band and
require small |B| over the entire band. This requirement
becomes increasingly difficult to satisfy as the band-
width increases. With these comments in mind, it
should be clear that the B = 0 simulation shown in
Fig. 1 is highly idealized.

Acoustic simulations based on the RAM propaga-
tion model [11] were performed to test the ideas that
we have described; the results are presented in Fig. 2.
The environment used in the simulations consisted of
a range-independent deep ocean sound speed profile
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Fig. 2. a—Background sound speed profile used in wavefield simulation. b—Corresponding 3 vs m curve at f = 75 Hz. Mode
numbers 0, 15 and 25 are marked with an asterisk. c—Simulated wavefield p(z,?) at a range of 500 km for a source at 800 m depth
with fy = 75 Hz and a computational bandwidth of 37.5 Hz. d—Corresponding mode-processed wavefield p,, (7). Wavefield inten-
sity, with a 35 dB dynamic range, is plotted in both (c) and (d). The range evolution of the m = 0, 15 and 25 modal pulses are
shown in (e), (f) and (g), respectively. The envelope of each pressure time history is shown with a heavy gray curve.

typical of early Fall conditions in the eastern North
Pacific Ocean (Fig. 2a), on which an internal-wave-
induced sound speed perturbation [12] was superim-
posed. The near-axial source transmitted a pulse con-
sisting of four cycles of a 75 Hz carrier (the effective
bandwidth was approximately half of the 37.5 Hz
computational bandwidth). The resulting wavefield
plz, 1) (Fig. 2¢) and corresponding mode-processed
wavefield p,(7) (Fig. 2d) are shown at a range of
500 km. Note that the multipath time spread is about
2 sec and that the time spread of most modal pulses is
several tenths of a sec, while the duration of the trans-
mitted pulse (one bit) is about 50 ms. Also shown in
the figure are B(m; 75 Hz) (Fig. 2b) and the range evo-
lution of the modal pulses corresponding to m = 0
(Fig. 2e), m = 15 (Fig. 2f) and m = 25 (Fig. 2g). B(m;
75 Hz) has zeros near m = 25and m = 32. The m =0
and m = 25 modal pulses correspond, according to our
definition, to weakly dispersive modal pulses. The m =
15 modal pulse is not a weakly dispersive modal pulse,
according to our definition; that modal pulse is
included in the figure to illustrate the difference
between weakly dispersive modal pulses and more typ-
ical modal pulses. In the construction of the m = 0 and
m = 25 modal pulses shown in Fig. 2, phases were
adjusted using the phase factor ¢ that was discussed
in the context of Eq. (4). This phase correction will be
discussed in more detail below.

Figure 2 shows that at 500 km range both the m =0
and m = 25 modal pulses have experienced very little
dispersion-induced distortion, while the m = 15 modal
pulse has experienced very significant dispersion-
induced distortion. It follows that if a sequence of bits,
each consisting of a few cycles of a 75 Hz carrier with
some appropriate phase-modulation, is transmitted,
that same sequence of bits can be recovered at r =
500 km by constructing the corresponding m = 0 and
m = 25 modal pulses. In other words, the m = 0 and
m = 25 modal pulses provide a basis for transmitting a
communications signal at » = 500 km in this environ-
ment without performing any channel equalization.
The same cannot be said of almost all other modal
pulses, however, including the m = 15 modal pulse. We
have not considered ranges longer than 500 km in our
simulations. Beyond that range the assumption of a
range-independent background sound speed profile
will, in most ocean environments, be questionable.
Also, keep in mind that our simulations don’t account
for ambient noise, measurement errors, source and/or
hydrophone positioning errors, source motion, etc.

Two subtle issues relating to the simulations shown
in Figs. 2e—2g deserve further discussion. First, note
that the m = 0, 15 and 25 modal pulses at very short
range are not identical to each other and all differ
slightly from the source time history. The reason for
this is that, across the excited frequency band, the
excitation of modes with those mode numbers is not
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uniform. In practice, to insure that the m-th modal
pulse at very short range is a good approximation to the
source time history, the source depth must approxi-
mately coincide with an antinode of a modal eigen-
function v,,(z; f;). Second, our simulations revealed
that, in the presence of an internal-wave-induced
sound speed perturbation, estimates of Sy and S,
based on the background sound speed profile were not
accurate enough for the phase correction factor &®® to
freeze the phase of the carrier frequency under the
source envelope for m = 0 and m = 25. To solve this
problem S, — §,, was chosen to be the smallest num-
ber that shifts the phase of the carrier in the modal
pulse at » = 500 km in such a way as to coincide with
the phase of the carrier of the source function; the
same (linearly increasing with range) phase correction
was then applied at all ranges shown in Figs. 2e and 2g.
Experimentally, this procedure could be duplicated by
transmitting one or more phase calibration bits in
addition to the communications signal. Note also that
this phase correction procedure is convenient but not
essential; if this correction is not applied phase differ-
ences between 0-bits and 1-bits will be maintained,
thereby allowing the communications signal to be
recovered. No phase correction was applied to the m =
15 modal pulse shown in Fig. 2f because the idea of
freezing the phase under the envelope is meaningful
only if the envelope has a fixed form, i.e., only for
weakly dispersive modal pulses.

Recall that we defined weakly dispersive modes as
those for which IB(/) = 0. The definition /3(/) = 0 was
used rather than 3(/) = 0 so as to include the m = 0
mode. If we neglect the m = 0 mode and invoke the
slightly more restrictive definition that a mode is
weakly dispersive if B(/) = 0, then one sees that weakly
dispersive modes are closely related to weakly diver-
gent rays [13—19]. This connection follows from the
asymptotic equivalence [20] of the ray-based stability
parameter o.(/) and the mode-based waveguide invari-
ant B(/), and the observation that weakly divergent
rays satisfy the condition a(/) = 0. (Note that the
action [ can be used to label both rays and modes).
o.(/) is defined as (I/Q)dQ)/dI where (1) = 2n/ R(1)is
the spatial 'frequency’ of a ray. Weakly divergent
rays satisfy the condition dR/dS, = 0, or, equivalently,
o = 0. (It is helpful here to note that the phase slow-
ness S, is also the horizontal component of the ray
slowness vector, which is constant following a ray in a
stratified environment, and that —2ndl/dS, = R.)
Aweakly divergent beam is a continuum of rays sur-
rounding a ray with oo = 0, while a weakly dispersive
modal pulse is a continuum of modes surrounding a
mode with [} = 0. Thus, apart from the fact that ray-
mode equivalence dictates that a mode is formed by
interfering up— and down-going rays whose turning
depths coincide with the modal turning depths, weakly
divergent beams and weakly dispersive modal pulses
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are essentially the same distributions of energy. Both
weakly dispersive modal pulses and weakly divergent
beams are known to have many interesting properties;
in addition to the references listed above, see [21] and
references therein.

In this letter we have pointed out that weakly dis-
persive modal pulses, consisting of distributions of
acoustic energy with fixed mode number and variable
frequency, for which I(m; f)B(m; f) = 0 over the entire
frequency band, are well suited for underwater com-
munications applications. Such weakly dispersive
modal pulses are advantageous because they are asso-
ciated with both small dispersion-induced distortion
and small scattering-induced distortion. By exploiting
weakly dispersive modal pulses, communication sig-
nals can be transmitted from a point source to a distant
location without performing channel equalization. A
vertical line receiving array is required because mode
filtering must be performed to extract the transient sig-
nal carried by certain fixed mode numbers. In prac-
tice, the need to measure the wavefield on a vertical
line array should be largely offset by a significant pro-
cessing gain associated with the required mode-pro-
cessing. Although the procedure that we have
described avoids channel equalization, it should be
kept in mind that to perform the processing that we
have described, the environment must be known well
enough to compute 3(m; fo) and to construct y,(z; /),
across the relevant frequency band, for one or more
weakly dispersive modes. The close connection
between weakly dispersive modal pulses and weakly
divergent beams has been pointed out.

Finally, we note that the procedure that we have
described has been implemented using data collected
(for a different purpose) in a deep ocean environment
with f, = 75 Hz and »n, = 2. The first ten modes were
used in that analysis because the receiving array
deployed in that experiment limited analysis to low
mode numbers. Using those data, the procedure that
we have described works very reliably at 50 and
250 km, and somewhat reliably at 500 km. Experi-
mental results will be described elsewhere.
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