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Abstract—Sound propagation through a waveguide is generally modeled by the Webster horn equation which
assumes a planar pressure wavefront. However, most of the sources are non-planar in nature. In this work, a
1-D model is derived for sound propagation through a 2-D waveguide with circular wavefront. The model is
derived from the 2-D Helmholtz equation using the weighted residual method. The model assumes a uniform
pressure across the angular coordinate at a given radial distance. A 2-D finite element model is used to vali-
date the results for different waveguide geometries and it shows good agreement.
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1. INTRODUCTION

Sound propagation in two dimension from a har-
monic sound source is given by the Helmholtz equa-
tion [1]:

2
Vip+ZSp =0, (1)
c
where p is the pressure amplitude, © is the angular fre-
quency and c is the speed of sound. The above equa-
tion reduces to the Webster horn equation or Webster
equation (Eq. (2)), by assuming a uniform pressure
across the vertical cross-sectional area of the
waveguide [2]. This assumption simplifies the 2-D
problem to a 1-D model governed by an ordinary dif-
ferential equation:

2 N 2
d_P+@(§)+(&p: 0, )
dx?  dx\S o’

where S is the variable cross section area and is the first
derivative of 8" with respect to x, p is the pressure and
o is the angular frequency.

A detailed review on the Webster horn equation and
its solution was given by Eisner [3]. There have been
some improvements over the Webster equation. Mar-
tin [4] has obtained a hierarchy of one dimensional
ordinary differential equations for an axis-symmetric
waveguide. The equations were obtained by solving the
Helmbholtz equation using the power-series expansion
method in a stretched radial coordinate. The lowest
approximation leads to the Webster equation and sec-

I The article is published in the original.

ond approximation leads to a fourth order differential
equation. Rienstra [5] also mentions about sound
propagation in a waveguide with mean flow, duct with
acoustic lining etc. Webster horn equation has many
applications in predicting sound propagation through
waveguides, horns, musical instruments etc. Recently
we have used Webster horn equation for predicting fre-
quency band structure in one dimensional sonic crys-
tal [6-9] which can be used for the purpose of sound
attenuation in selective bands of frequency.

Webster horn equation is also studied [10] for non-
linear acoustic waves in lossy channels with variable
cross-sections. The method is based on studying the
point symmetry groups for certain types of cross-sec-
tional profiles. Webster horn equation has also been
used in predicting acoustic resonance in turbine cen-
trifugal pumps [11]. A transmission line model based
on the Webster horn equation is also proposed [12] to
model the sound propagation in vocal tract by approx-
imating it as a series of conical horns.

Most of the sources in nature, especially those at
high frequencies, have a non-planar pressure profile.
Therefore, it is important to account for the non-pla-
nar pressure profile and its effect on sound propaga-
tion through a waveguide. In this paper, we propose a
model similar to the Webster horn equation, but for a
wave with cylindrical wavefront (circular in 2-D)
propagating through the waveguide as shown in
Fig. 1b. The figure illustrates the difference between
wave propagating with a plane wavefront versus wave
propagating with circular wavefront. Sound wave
propagation with planar wavefront is modeled by the
standard Webster horn equation (Eq. (2)). The aim of
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Flg. 1. sound propagation through a waveguide. Sound

wave is modeled w ith (a) planar wavefront (b) circular

wavefront.

Flg. 2. sound propagating from a line source through a

long in the Z

Xy

waveguide. The source and waveguide are

direction so that the analysis is restricted to the 2-D

plane.

Flg. 3.7 he symmetric portion ofageneralwaveguide. The
figure shows the geom etric location ofan arbitrary pointA

in the polarcoordinates. The unitnormal and tangential

vectors atthatpointare also shown.

paperis to obtain a governing differen tialegquation

ilar to the W ebster horn equation but for sound
ropagating w ith a circular wavefront E ffec
ly, the m odel has the advantage o f reducing a two

dim ensionalproblem to a one dim ensionalmodelrep -

an ordinary differen tial equation

equation obtained is used to evaluate pressure

fie Id fo r differentgeometries o fthe waveguide and the

results are validated w ith 2 -D finite elem ent sim ula-
tions. The results from the differentialequation m atch
exactly w ith the finite elem ent sim ulation for a un i
form w aveguide It is showwon thatfor ssuch wavegudide in
form o fsector o fcircle (w ith no curvature) the differ-
ential equation reduces to th e Bessel's equation o f
zero order. H ence it gives exact solution However, as
the waveguide is made non-uniform by introducing
perturbation (sem icircle) in the waveguide, the accu-
racy of 1-D m odel depends upon frequency o f the
propagating wave and the degree o f perturbation. At

low frequencies, the results m atch exactly w ith the
finite elem entsim ulations, butathigh frequencies, the
1-D m odel predictions deviate slightly from the finite
elem entresults
2 P R O B LE M D E F IN IT 10 N

The problem considered in this paper is shown in
Fig 2, where sound from a line source propagates
through a waveguide. C onsidering thatthe line source
and the waveguide is long enough in the Zaiieciion,

Zaireo-
Xy

the pressure can be ifo rm in the

tion , and hence the analysis is restricted to the 2 -D

plane .3

L AT IO N

S ound propagation w ith cy lind rica l w ave front
(3 -D ) is given by the H elm holltz equation in cylind ri-
calcoordinates

-<L(rdP) + -p4- 2} 10 _
a-p . A_F. p =0 (3)
roA dA  r2,.2 dz
A's explained in F ig 2, the pressure variation in the Z
d ire ction is n ot sigmnificant, and hence the e quation
reduces to E q. (4) for the 2 -D geometry
t:dy) . J-di. cw0)p =0 o
rorc dA  r2,4 2

T he problem (Fig . 2) is sym m e tric about the y-
axis, therefore only the top halfo fthe geom etry is con -
sidered and is showwn in Fig 3 T he waveguide consid-

ered is m ade o fsound hard m aterialw ith respectto air

The top surface o fthe waveguide is represented by the

coordinates (r,0 (r)) as shown in Fig. 3

polar

Sound propagation in such 2 -D geom etry is given
by Eq (4) w hich is a partial differential equation in
pressure w ith respect to radial and angular coordi-
nates. The aim in this w ork is to reduce the partiald if-
ferential equation to an ordinary differential equation
in the radial coordinate For this, the num erical
m e th o d o f w eighted residual m ethod [13] is used,
w hich is an integralm ethod to obtain an approxim ate
solution to any differentialegqguation
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The weighted residual method can find an approx-
imate solution to any differential equation by equating
the integral of the equation with respect to a weighting
function over a domain to zero. In the present case
with Eq. (4), we chose to integrate the equation over a
circular arc with center at the origin O and with an
integrating variable ¢. The variable angle ¢ varies
across the arc from zero to 6(r). It will be shown later
that the circular arc corresponds to the wavefront of
the propagating wave with source placed at origin.

The implementation of weighted residual method
on Eq. (4) is shown in Eq. (5) which uses weighting
function as unity:

9

[L(2) s (=0
0

The integral equation (Eq. (5)) can be split into three
integrals for the ease of analysis:
9

T T
[°]

12=Jey§@d¢ ™
[°]

I

L

0

As the waveguide is symmetric about the axis ¢ = 0, the
pressure is also symmetric and hence

ol =y, ©9)
00|y -0

Using the Leibniz rule [14] and symmetric condition,
the integrals can be simplified as

0
_1ld| )4 : ar)| o
I, = ;[E{r{ajpd¢—p|ee H_(’E’) ee}, (10)
0
_1lop
I =9, 11
=52l (1)
29
- (@
1= (2) fpas. (12)

0
where prime denotes derivative with respect to 7.
The upper surface (curve) of the waveguide is sound
hard boundary condition which is given as
nVp =0, (13)

where n is the surface normal at a point A as shown in
Fig. 3. The expression when simplified leads to the fol-
lowing equation:

Op ne 6p1}
[—e _opl _p, (14)
2
or a6,
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Fig. 4. Specific example of waveguide with perturbation of
a semicircle.

As it can be seen by adding the three integrals, the
sound hard boundary condition at the top surface
appears in the expression leading to the following
equation:

6 0
%,(%,[’{c%jpdd)—pleeﬂ+(%°)2J'pd¢ =0. (1)
0 0

The sound source is placed at the origin O, and assum-
ing that the wave propagates with a circular wavefront,
the pressure will be constant over any circular arc.
With this assumption, pressure is now only a function
of the radial distance. Therefore the above integral
expression can be simplified to an ordinary differential
equation in radial coordinate:

2 ' 2
d_p+(e_+l)d_p+(9)p = 0.
drr N8 rdr \c

The above equation is similar to the Webster horn
equation (Eq. (2)), however, the above equation is
valid for sound propagating with circular wavefront in
a two dimensional waveguide.

(16)

4. VALIDATION OF THE 1-D MODEL
WITH THE FINITE ELEMENT SIMULATION

Sound propagation through the 2-D waveguide can
be modeled by the 1-D ordinary differential equation
derived above. The purpose of this section is to validate
the 1-D model by the 2-D finite element simulation
and to observe the conditions for which the 1-D model
predictions are comparable with the 2-D simulations.

To accomplish this goal, a specific example of a
waveguide in the form of a sector is considered. A per-
turbation of a semicircle is introduced in the sector so
that it perturbs the pressure field and forces it to be two
dimensional. The symmetric part of the waveguide is
shown in Fig. 4. A point source is located at the
center O, which is also the center of the sector. The
waveguide extends over a radius varying from r, (0.1 m)
to r, (0.45 m). The perturbation of a semicircle is
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Fig. 5. Average pressure versus radial distance for wave
propagating from a point source in a waveguide with circu-
lar wavefront, planar wavefront and finite element (FE)
simulations.

introduced in the waveguide at a radial distance of 7,
(0.28 m). This perturbation makes the waveguide non-
uniform in the angular direction. Different waveguides
were considered by varying the radius of semicircle r,
as zero, 2 and 5 cm.

For the same geometries of the waveguide, 2-D
models were constructed in finite element software
COMSOL Multiphysics. The solution to the 1-D dif-
ferential equation was obtained by finite difference
method by using second order central difference dis-
cretization. A pressure boundary condition of one Pas-
cal was applied at the inlet (7}, while radiation bound-
ary condition was applied at the outlet (#,) for both
finite element and the 1-D model. Forthe 1-D model,
radiation boundary condition was implemented by the
1-D Sommerfeld radiation boundary condition [15]
.

P i . p = 0. (17)

The average pressure p(r) averaged over the angular
coordinate ¢ from the 1-D model is plotted along with
the finite element results for different geometries at
500 Hz and 5 kHz in Fig. 5. A comparison is also made
with the Webster horn equation for the same geome-
tries and frequencies.

The results (Fig. 5a and 5b) show that 1-D model
predicts the average pressure exactly when the
waveguide is uniform (r, = 0). For this case, when

GUPTA et al.

there is no perturbation, the pressure is uniform in the
angular direction and hence our assumption for the 1-
D model holds exactly true. It can also be seen from
the Eq. 16, when the term 6’ = 0, the equation reduces
to the Bessel equation of zero order. And hence for this
case, the 1-D model turns out to be an exact equation.

For the subsequent cases when the perturbation
parameter, r, is non zero, the waveguide is non-uni-
form in the angular direction, and so the pressure.
Still the prediction by the 1-D model matches well
with 2-D finite element model. At low frequency
(500 Hz) or when the perturbation (r,) is small, the
pressure from 1-D model is quite close to the 2-D
finite element results (Fig. 5a—5e). However, the
results vary slightly, especially for highly non-uniform
waveguide at high frequency (Fig. 5f). Forsuch a case,
we need to include higher modes of pressure in the
angular direction to get a better solution.

5. CONCLUSION

A one dimensional model for sound propagation
from a point source through a two dimensional
waveguide has been proposed. The model assumes
uniform pressure across the circular wavefront and is
obtained from integrating the governing Helmholtz
equation in polar coordinates using weighted residual
method. The results obtained are compared with 2-D
finite element simulation for different waveguide
geometries and frequencies. The results are in good
agreement. However, at high frequencies and for non-
uniform waveguide, the one dimensional model pre-
diction differs slightly from the finite element results.
The 1-D model can be improved in the future by
including a non-uniform pressure in the angular coor-
dinate to obtain higher order variants of this 1-D
model.

It also interesting to note that the same equation
can be obtained from the general form of the Webster
horn equation derived in the Pierce’s textbook [16].
The general form of Webster equation, using the
present convention of variables is

2
1 Q(S(x)@) _lop
S(x)0x or o’ or

Considering the area S(x), as a function of », which
can be written as S(r) = rO(r). Substituting this in the
general equation and for a harmonic analysis, the
equation after some manipulation leads to the Eq. (16)
derived in this paper.

(18)

The equation for wave propagation with circular
wavefront provides with a simple yet accurate model
for sound propagating from the line source, enclosed
by some sound hard surface acting as a waveguide. The
predictions by this 1-D model are accurate at low fre-
quency and for less distorted waveguide.
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