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Can’t One Really Hear the Shape of a Drum?!
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Abstract—In this paper we study the wave and the Klein—Gordon equations in frontiers with the same set of
eigen values using a computational algorithm based on the finite difference method and the discrete Fourier
transform. Doing this we found that although the set of eigen values in the two shapes are equal, the intensities
in the spectrum are different, which means that the question, can one hear the shape of a drum? is still open.
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INTRODUCTION

When you hear a band you are able to distinguish
each instrument by its sound. In drums, the sound is
determined by the material, how tight this is, and by its
shape. A very interesting question that arises then is to
determine how much information can be obtained of
the sound produced by the drum. This problem was
discussed by Mark Kac, who in 1966 published a paper
called Can one hear the shape of a drum? [1, 2, 8]
where he explores the possibility of acknowledging the
shape of a drum just by knowing the set of normal
vibrating frequencies. During the same epoch this
problem was solved by John Milnor, who shows two
regions in dimension 16 that share the same set of
eigen values for the operator —V2. In one dimension it
is obvious that the set of eigen values is plenty enough
to know the length of “the drum”. But in two dimen-
sions the problem remained without solution till 1992,
when Gordon and Web showed in their paper “You
can’t hear the shape of a drum” [3] two regions that
share the same set of eigen values for the operator —V2.

Among the things that can be acknowledged by the
sound of a drum, there are two meaningful results, one
says that it is possible to know the drum’s area. This
was a conjecture proposed by Lorentz and proved by
Herman Weyl. He was capable to prove it using the
theory of integral equation that his teacher Hilbert had
developed a few years before. The equation is as fol-
lows:

limM = @’ (1)
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where |Q2| is the area of the drum and N()) is the num-
ber of eigen values less than A. And the second is the

1 The article is published in the original.

possibility to determine which kinds of conditions are
imposed on the frontier, as can be seen in [4, 21].

PRELIMINARIES

The Klein—Gordon equation (K—G) is the relativ-
istic version of the Schrodinger equation for a particle
without spin. It was proposed by Oskar Klein and
Walter Gordon and can be obtained taking the Hamil-
tonian relativistic of a free particle:

= pzc2 +mc. (2)

Rewriting this equation in the terms of the opera-

tors, we can get to
Ak S PRI EINE (3)
ot

But the square root in this equation has some prob-
lems, like the relativistic invariance is not clear due to
the lack of symmetry between space and time coordi-
nates. To solve this problem and get rid of the square
root, it is common to use the Hamiltonian square like
this:
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This is known as the Klein—Gordon equation, and
as we will show the base states are the same of the oper-
ator —V?, so the results of Gordon and Webb, see [3],
where they proved that it is impossible to know the
shape of a drum just by knowing its set of eigen values,
is also valid for the K—G equation. But knowing the set
of eigen values is not enough to determine how is going
to be the sound produced by the drum; this informa-
tion only gives us a hint of how the frequencies that are
going to compose the sound of the drum are. To have a

¥ = 0. 4)
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real knowledge of the drum’s sound, we must have
information about how intense are these eigen fre-
quencies in the sound perceived by our ears. In order
to do this, we are going to study the temporal evolution
of the wave and the Klein—Gordon equations.

NUMERICAL METHOD

Here we solved the wave and the Klein—Gordon
equations finding the acceleration of each point on the
grid trough finite difference method as follows: first we
started by discretizing the spatial derivate transform-
ing the equations in

2
O = VLWl Pl Y W),
ot

Where the sub-indices denote space and the super-
indices denote time. Therefore we have an expression
for the acceleration for each point on the grid and
using the Euler method we calculate the position of
each cell for each time step.

Doing this we are able to set the function W(x, y, 1)
as a vector of N? components. Of course we are think-

ing in a two dimensional case where the square drum
has been represented by a grid of N x N. Therefore the

)

function W(x, y, f) is written as ‘I’i ; and doing this the
wave and the Klein—Gordon equations are trans-
formed in:

i+l =i —2i-1
¥ =AY + BY (6)

where A and B are operators that operate over the

—>i
estates ¥ . Now, it is very important to notice that it is
possible not only to advance in time, but to go back-

wards in time, writing ‘?’l : in terms of ‘?’Hl and ‘?’l.
More about similar vibrational problems [19, 20] and
this kind of methods and its convergence can be seen,
for example, in [5, 6, 10, 11].

METHOD FOR FINDING THE EIGEN VALUES
AND EIGEN FUNCTIONS FOR THE KG
AND THE WAVE EQUATIONS

Now we want to know the set of the eigen functions
and the eigen values. In the K—G equation, we are try-
ing to find the energies available of a particle confined
in a two dimensional box and its quantum states, and
in the case of the wave equation we are looking for the
normal modes of oscillation and its frequencies.

So the general problem will be to solve the follow-
ing equation:

o oW 18 m'c

o’ oy cor R
on an region under Dirichlet conditions in the frontier
for a certain initial condition f{x, y).

=0 (7)
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But before we begin to explain the way to find its
eigen values and eigen functions, it is important
to notice that for the K—G equation, the function
Y(x, y, 1) could be written as R(x, y)I(f) transforming
the K—G equation in two ordinaries differential equa-
tions like

T
W' T \

‘ij: T, VR =Yg,
dh c
where o = m?c*/h2.
So the states available for the particle are the
same as the normal states of a classical drum, with
the difference that the oscillation frequencies can

change depending on the constant. More about the
K—G equation can be found in [9, 13—16].

Now we are going to find the eigen functions R and
its eigen values. In order to do this, we solved the prob-
lem proposed in (7) using our algorithm. Remember
that in the case of the wave equation m = 0.

But, of course, finding the solution ¥(x, y, ) for
any time it is not enough to get to our main target, but
this is the path to get to it. We are going to have into
account the fact that any state of the system can be
written as a linear combination of the basis state, so we
are going to put the system in an initial state f{x, y) and
then evolve it for a long time, so we will calculate the
Fourier transform of one point of the system. There-
fore we obtain set of frequencies that compose the
whole oscillation, and in the case of the K—G equation
the set of energies available for the particle enclosed.

In our algorithm it is important to be careful with
the point on which we choose to calculate the Fourier
transform, because if we choose a point in which the
eigen function that we are interested in has a node, we
are not detecting its eigen value. Once we have the
eigen values we are going to reproduce the eigen func-
tions. In order to do that, we will take advantage from
the system’s resonance, which means that forcing one
point with its natural frequencies (eigen values) we
obtain the eigen functions.

To close this section, it is important to say that the
forced point has to be very well chosen. It must not be
a spot where we expect to find a node because in other
case we will not get the real shape of the eigen func-
tion, and neither a point where a maximum is
expected, because doing this we are forcing this partic-
ular point to have the same maximum for any time,
and also we would be changing the shape of the fron-
tier. Due to this the forced point must belong to the
frontier or it must be as close to it as possible.

)

COMPARISON WITH A SIMPLE ONE
DIMENSIONAL CASE
FOR THE K-G EQUATION

For this case we will work with natural units, so the
K—G equation in one dimension will be:
ACOUSTICAL PHYSICS Vol. 57
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Fig. 1. Frequency spectrum for a particle enclosed in a one dimensional box.

2
o R

ot
In this case, the constant m? will be 10° and the parti-
cle will be enclosed in the interval (0, 0.01). In other

words, we have a particle of 10> MeV enclosed in
one dimensional box of length 0.01 MeV~!.

In order to find the eigen values w,, we analyze the
point x = 0.005, which means that we are not going to
detect the energies that belong to the even normal
states. The spectrum given by our algorithm is shown
on Fig. 1.

In order to show how accurate our method is, it is
important to obtain the frequencies w,, in an analytical
way. So the solutions for the Eq. (8) are sin and cos
functions and due of the Dirichlet boundary condition
we have:

¥ = 0. 9)

2
w,—Q _nm
B (10)

where L is the length of the box, so the angular fre-

quencies w,, are:
2 2 22
JoL +n'n'c
w, = ————

n 7 D

Now, the following table shows some of the frequen-
cies given by the formula (11) and the frequencies
given by our algorithm.

As we can see in the Table 1, the method used to
find the eigen values and, in consequence, the energies
available for the particle it is very accurate. Therefore
we are going to use it in the two dimensional cases for
a complex boundary.
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DRUMS WITH THE SAME SET
OF EIGEN VALUES

Inspired in the work done by Gordon and Webb in
their paper [3], we took the same shapes which are
shown on Fig. 2. It is very important to say that in this
case we are not using any kind of units, we are just solv-
ing the Eq. (7), or the Eq. (8), where ¢ = 10, o = 107,
a=0.025.

Using our algorithm we calculated the frequencies
(energies) for a particle enclosed in each region. These
results are shown in the Fig. 3, but due to the difficulty
to conclude if the spectrums are equal or not, in the
Table 2 we show the frequencies for the first 4 peaks.

First, is important to say that in this moment we are
not interested in the intensities of the spectra, but in
which frequencies the peaks are. Second, to note that
the two regions shown in the Fig. 2 shares the same set

Table 1. Comparison between our algorithm and the ana-
Iytical results

Quantum
number n

Frequency
(analytical), Hz

Software
frequency, Hz

Error
percentage, %

1 70.94 71 0.084
3 158.21 158 0.131
5 255.01 255 0.009
7 353.6 354 0.113
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Fig. 2. Boundaries with the same set ofeigen values.

of eigen values, due to the fact thatin [3] Gordon and
Webb proved that this two shapes shares the same set of
eigen values for the operator —V2. It is clear that the
frequencies shown in the Table 2 are actually eigen val-
ues, because forcing the system whit this frequencies
we obtain the same well know eigen functions for this
drums, as can be seen in the Figs. 4—7 and in the paper
[7]. So in the Fig. 3 and Table 2 we are corroborating
their results for the K—G equation, which is very sim-
ilar to the wave equation once the variables separation
ismade, see Eq. (8).

This means that is impossible to notice the differ-
ence between the two shapesjust by knowing the set of
energies available for the particle. But as can be seen in
the Fig. 3, the intensities in the spectra for each shape
are very different. This gives us a hint that it is maybe
possible to notice the difference ofthe shapes not only
by knowing the set of eigen values, but its intensities.
Now, it is clear that the energies available for the par-
ticle enclosed in the two shapes are equal, but going
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Fig. 3. Frequency spectrums for the shapes 1and 2 in the
Fig. 2.
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Fig. 4. First base state for the shape 1.

back to the classical drum studied by Gordon and
Webb, what does it mean to hear adrum? Well, itisnot
enough to know each one ofthe fundamental frequen-
cies composing the whole oscillation. Also you have to
know the intensity of each frequency. Mathematically
speaking any kind of oscillation can be written as

&
Wy, t) = ~ CiTiw, t)Ri(x,y),

i=1
where Ciare the intensities; Ti(wi, t) are the functions
responsible for the oscillation with frequencies Wi, and
finally Ri(X, y) are the eigen function of the operator
—V2 These coefficients Cimust be equals for the two
drums in order to make both drums sound alike.
Therefore we are going to concentrate ours efforts in
finding Ci to compare these coefficients in the two
drums for a particular oscillation. To achieve this goal
we are going to reproduce the base states for the two
drums in order to find where they have its maximum.

(12)

BASE STATES FOR THE QUANTUM DRUMS

Using the resonance of the system, we forced it
with the firstand second resonance frequencies for the
two shapes, in a spot near the frontier, achieving the
base states in both cases as is shown in the Figs. 4—7.

As we expected, the base states are the same as the
ones for the classical wave equation, see [7], and that
more important for us now, we know where the maxi-
mum for each eigen function is. But before we go on
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Fig. 5. Second base state for the shape 1.
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Fig. 6. First base state for the shape 2.

800 1
700
600 -

0 0.02

469

.
COOCO ooo
XA NoOND O

0
004 006 0008 010

Fig. 7. Second base state forthe shape 2.
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Fig. 8. Frequency spectrum forthe shape 1, taken where the first state achieves its maximum in the K—G equation.

with the discussion it is very important to say that we
know that the Figs. 4 and 6 are the firsts base states
because it is well known that for the operator —V2for
Dirichletboundary condition and with asmooth fron-
tier, the first eigen function do not change its sign on
the region, this can be seenin [17, 18].

SPECTRUM INTENSITIES

Now that we know where the maximums are, we
are going to calculate the Fourier transform in this
points, taking as the initial state ofthe system the func-
tion f(x, ¥) = 1in order to know the coefficients C,
which finally will tell us if the two drums sound alike.
It is important to note that the initial condition
f(x,y) = lisarbitrary. We can choice a different initial
condition, but this mustbe the same for both shapes.

The Figs. 8 and 9 show the spectrums taken where
the maximum of the firsts eigen states are for the
shapes 1 and 2. As can be seen, the intensities of the
first peak, frequency 258 Hz, are very similar, which
means that the coefficients Cj, Eq. (12), are almost
equals in both quantum drums, and therefore we can’t
decide ifthey “sound” alike ornot. But doing the same
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procedure for the second base state we found a very
different intensities in the second peak, 292 Hz,
Figs. 10 and 11, which means that the behavior ofthe
oscillation for both drums is very different.

Inspired on these results, we did an analogous anal-
ysis for the wave equation, in this case the velocity of
propagation was 10 m/s, realizing that for the seconds
eigen states, as in the quantum case, the peaks in both
spectra, peaks of 244 Hz, are very different in their

Table 2. Comparison between the frequency spectra for the
shapes 1 and 2

Shape1  Shape?2
Frequencies for the peak 1, Hz 258 258
Frequencies for the peak 2, Hz 292 291
Frequencies for the peak 3, Hz 331 331
Frequencies for the peak 4, Hz 419 418
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Fig. 9. Drequency spectrum for the shape 2, taken where the first state achieves its maximum in the K—G equation.
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Fig. 10. Frequency spectrum for the shape 1, taken where the second state achieves its maximum in the K—G equation.
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Fig. 11. Frequency spectrum for the shape 2, taken where the second state achieves its maximum in the K—G equation.
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Fig. 12. Frequency spectrum for the shape 1, taken where the second sates achieves its maximum for the classical wave equation.
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Fig. 13. Frequency spectrum for the shape 2, taken where the second sates achieves its maximum for the classical wave equation.

intensities, Figs. 12 and 13, which means that there is
a big difference in the coefficients C,, Eq. (12), for the
two drums. As a consequence, we can differentiate
both drums by their sound, due to the fact that the
sound produced by the first drum is going to be
sharper.

CONCLUSIONS

We studied the behavior of the Klein Gordon and
classical wave equation and far from solving a problem
we found another one, in which two regions that were
sharing the same set of eigen values for the operator
—V? sound different. This means that both drums can
2011
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be distinguished by the sound they produce. Therefore
it let us understand that the question: “Can one hear
the shape of a drum?” has not been answered.
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