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Abstract—The basic idea of seismic barrier isto protect an area occupied by abuilding or agroup ofbbuildings
from seismicwaves. Depending on nature of seismic waves that are most probable in a specific region, differ-
ent kinds of seismic barriers are suggested. For example, vertical barriers resembling awall in asoil can protect
from Rayleigh and bulk waves. The FEM simulation reveals that to be effective, such abarrier should be (i)
com‘posed of layers with contrast physical properties allowing “trapping” of the wave energy inside some of
the layers, and (ii) depth of the barrier should be comparable or greater than the considered seismic wave
length. Another type of seismic barrier represents a relatively thin surface layer that prevents some types of
surface seismic waves from propagating. The ideas for these barriers are based on one Chadwick’sresult con-
cerning non-propagation condition for Rayleigh waves in a clamped half-space, and Love’s theorem that
describes condition of non-existence for Love waves. The numerical simulations reveal that to be effective the

length of the horizontal barriers should be comparable to the typical wavelength.
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INTRODUCTION
Methods of Seismic Protection

Generally, current approaches for preventing fail-
ure ofstructures due to seismic activity can be divided
into two groups: (i) approaches for creating seismically
stable structures and joints; this group contains differ-
ent methods ensuring either active or passive protec-
tion; and (ii) approaches for creating a kind ofseismic
barrier preventing seismic waves from transmitting
wave energy into a protected region.

W hile the first group includes a lot of different
engineering approaches and solutions, the second one
contains very few studies; see Takahashi et al. (2001)
and more recent works by Motamed et al. (2008),
Kusakabe etal. (2008). The proposed research belongs
to the second group.

Possible Types of Wave Barriers

The considered seismic barriers can be oftwo types:
vertical, aimed to reflect, trap, and dissipate most of
the seismic wave energy; and horizontal, based on
Chadwick and Smith (1977) and Love (1911) theo-
rems, and aimed to prevent certain types of seismic
waves from propagation; see, Fig. 1la.

Yet another interesting approach is to create a
“rough” surface ofthe half-space to force the propa-
gating Rayleigh wave scatter by caves and swellings; see
Fig. 1b, where part ofa free surface with the sinusoidal
roughness is pictured. In this respect, the rough sur-

1The article ispublished in the original.
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face apparently transforms the elastic half-space into
viscoelastic one. To be effective, periodic imperfec-
tions should have magnitude and period comparable
to the magnitude and wavelength of propagating Ray-
leigh wave (Sobczyk 1966, Maradudin & Mills 1976,
M aradudin & Shen 1980).

Roufle surface

Direction of propagation

Fig. 1. (a) Vertical and horizontal seismic barriers.
(b) Rough surface acting as seismic barrier against Ray-
leigh waves.
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In practice, such a rough surface can be achieved
by a series of rather deep trenches oriented transver-
sally to the most probable direction of the wave front.
Some of obvious deficiencies of this method are: (i) its
inability to persist the surface waves other than Ray-
leigh waves; (ii) protection from Rayleigh waves trav-
elling only in directions that are almost orthogonal to
orientation of the trenches; and (iii) high sensitivity to
the frequency of travelling Rayleigh waves. These
shortcomings made an idea of exploiting a rough sur-
face as a kind of protective barrier, unrealizable.

Vertical Barriers

For bulk waves the most effective vertical barrier
would be an empty trench, or a trench filled in with a
lighter material than the ambient soil. For such a bar-
rier most of the wave energy would be reflected, as is
shown on Fig. 2a. However, propagating Rayleigh or
Love wave will simply overflow an empty trench, as
Fig. 2b shows. Thus, to be effective against the most
dangerous types of seismic Rayleigh and Love waves,
the vertical barrier should be of a more elaborate type.
Possible structures of vertical barriers will be discussed
later on.

Horizontal Barriers

Horizontal barriers can be constructed by modify-
ing properties of the outer layer preventing the corre-
sponding surface wave from propagation.

In practice, modifying physical properties of the
outer layer can be achieved by reinforcing ground with
piles or “soil nails”; see papers where reinforcing was
studied for increasing bearing load of the soil
(Blondeau 1989, De Buhan et al. 1989, Abu-Hejleh
et al. 2002, Eiksund 2004, Herle 2006).

If distance between piles is sufficiently smaller than
the wave length, then a reinforced region can be con-
sidered as macroscopically homogeneous and either
transversely isotropic or orthotropic depending on
arrangement of piles. Of course, homogenized physi-
cal properties of the reinforced medium depend upon
material of piles, distance between them, and their
arrangements.

For stochastically homogeneous arrangement of
piles and the initially isotropic upper soil layer, the
reinforced soil layer becomes transversely isotropic
with the homogenized (effective) characteristics that
can be evaluated by different methods:

Voigt homogenization yields the upper bound for
effective characteristics (Bensoussan, Lions, Papani-
colaou 1978):

Ceffective = (1 _f)Csoil +priles7 (1)

where C,, are the corresponding elasticity tensors and
fis the average volume fraction of piles.
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Fig. 2. (a) Full reflection of an incident bulk wave from an
empty trench. (b) Flow of Rayleigh wave around an empty
trench.

Reuss homogenization. This method is related to
constructing the homogenized inverse tensors:

Seffective = (1 _.f) Ssoil +.fSpiles (2)

yields the lower bound, where S, are the correspond-

ing compliance tensors. In the case of pile reinforce-
ment these two methods give too broad “fork” and
thus, are not reliable.

Two-scale asymptotic expansion method. Much
more accurate results give the two-scale asymptotic
expansion method (Bensoussan, Lions, Papanicolaou
1978, Sanchez-Palencia 1983):

Ceffective = (1 _f)Csoil +priles + K’ (3)

where K is the corrector that is defined by solving the
special boundary value problem for a typical periodi-
cal cell. It is interesting to note that taking the correc-
tor K in Eq. (3) as the null tensor we arrive at Voigt
homogenization (1).

Methods for constructing the corrector within the
two-scale asymptotic expansion methods are dis-
cussed by Michel, Moulinec, and Suquet (1999), Cec-
chi and Rizzi (2001).



422 KUZNETSOV

©

()

Fig. 3. (a) Rayleigh wave in a half-space. (b) Stoneley wave on the interface between two contacting half-spaces. (c) Love wave

propagating on the interface. (d) Rayleigh-Lamb waves.

THE MAIN TYPES
OF SURFACE ACOUSTIC WAVES

In this section we proceed to analyzes of the main
types of seismic surface waves and conditions for their
non-existence.

Rayleigh Waves

These waves discovered by Lord Rayleigh (Strutt
1885) propagate on aplane surface ofa halfspace; see,
Fig. 3aand exponentially attenuate with depth. These
waves transmit the most seismic energy and lead to
most severe damage in earthquakes.

One interesting problem associated with Rayleigh
waves is a problem of “forbidden” directions of “for-
bidden” (necessary anisotropic) materials that does
not transmit a Rayleigh wave along some directions.
Forbidden materials and forbidden directions have
been intensively searched both experimentally and
numerically (Lim & Farnell 1968, 1969, Farnell 1970)
until mid seventies when the theorem of existence for
Rayleigh waves was rigorously proved (Barnett &
Lothe 1973, 1974ab, Lothe & Barnett 1976, Chad-
wick & Smith 1977, Chadwick & Jarvis 1979, Chad-

wick & Ting 1987). This theorem states that no mate-
rials possessing forbidden directions for Rayleigh
waves can exist.

Despite proof of the theorem of existence, a small
chance for existence of forbidden materials remained.
This corresponded to the case of non-semisimple
degeneracy of a special matrix associated with the
first-order equation of motion; actually, this matrix is
the Jacobian for the Hamiltonian formalism used for
Rayleigh wave description. However, it was shown
(Kuznetsov 2003) that even at the non-semisimple
degeneracy a wave resembling the genuine Rayleigh
wave can propagate. Thus, for waves propagating on a
homogeneous half-space, no forbidden materials or
directions can exist.

Stoneley Waves

These are waves were introduced by Stoneley
(1924), and analyzed by (Sezawa & Kanai 1939,
Cagniard 1939, Scholte 1947). Stoneley waves propa-
gate on an interface between two contacting half-
spaces, Fig. 3b.

In contrast to Rayleigh waves, Stoneley waves can
propagate only if material constants of the contacting
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half-spaces satisfy special (very restrictive) conditions
of existence. These conditions were studied by Chad-
wick & Borejko (1994), Sengupta & Nath (2001).

It should be noted that for the arbitrary anisotropy
no closed analytical relations between material con-
stants of the contacting half-spaces ensuring existence
or non-existence of Stoneley waves have been found
(2010).

Love and SH Waves

Love waves (Love, 1911} are horizontally polarized
shear waves that propagate on the interface between an
elastic layer contacting with elastic half-space; Fig. 3c.
At the outer surface of the layer traction-free boundary
conditions are generally considered.

In the case of both isofropic layer and half-space the
conditions of existence derived by Love are:

S S
Clayer < Chalfspace ) (4)

where ci are the corresponding speeds of the trans-

verse bulk waves. At violating condition (4) no Love
wave can propagate. For the case of both anisotropic
{monoclinic) layer and a half-space the condition of
existence is also known (Kuznetsov 2006a).

SH waves resemble Love waves in polarization, but
differ in absence of the contacting half-space. At the
outer surfaces of the layered plate different boundary
conditions can be formulated (Kuznetsov 2006b). In
contrast to genuine Love waves, the SH waves exist at
any combination of elastic properties of the contacting
layers.

Besides Love and SH waves a combination of them
can also be considered. This corresponds to a horizon-
tally polarized wave propagating in a layered system
consisting of multiple layers contacting with a half-
space. Analysis of conditions of propagation forsuch a
system can be done by applying either transfer matrix
method (Thomson 1950, Haskell 1953), known also as
the Thomson—Haskell method due to its originators;
or the global matrix method mainly developed by
Knopoff (1964).

At present (2010) no closed analytical conditions of
existence for the combined Love and SH waves propa-
gating in anisotropic multilayered systems are known,;
however, these conditions can be obtained numeri-
cally by applying transfer or global matrix methods;
see (Kuznetsov 2006a,b; Djeran-Maigre & Kuznetsov
2008).

Different observations show that genuine Love and
the combined Love-SH waves along with Rayleigh and
Rayleigh—Lamb waves play the most important role in
transforming seismic energy in earthquakes (e.g.,
Agnew 2002, Braitenberg & Zadro 2007). But, as we
have seen, there is a relatively simple (at least from a
theoretical point of view) method for stopping Love
and the combined Love and SH waves by modifying
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the outer layer in such a way that conditions of exist-
ence (4) are violated.

Lamb and Rayleigh—Lamb Waves

Lamb waves (Lamb, 1917) are dispersive waves
propagating in a homogeneous plate and (if a plate is
isotropic) polarized in the saggital plane, similarly to
polarization of the genuine Rayleigh waves; see also
Victorov (1967). It is known (Lin & Keer 1992, Ting
1996) that Lamb waves can propagate at any anisot-
ropy of the layer and at traction-free, clamped, or
mixed boundary conditions imposed on the outer sur-
faces of the plate. The same result can be extrapolated
to a layered plate containing multiple anisotropic
homogeneous layers in a contact (Ting 2002). Thus,
for Lamb waves no forbidden materials exist.

More interesting from seismological point of view
are Rayleigh—Lamb waves; see Fig. 3d. These are dis-
persive waves propagating in a layered plate contacting
with a (homogeneous) halfspace. Rayleigh—Lamb
waves in isotropic media are polarized in the saggital
plane defined by vectors v (normal to a median plane)
and n (direction of propagation), as Lamb and Ray-
leigh waves. Needless to say that Rayleigh—Lamb
waves are much more difficult for theoretical studies
than Rayleigh or Lamb waves.

SEISMIC BARRIERS

Herein, we present some results on numerical sim-
ulation of propagating seismic waves and their interac-
tion with seismic barriers. The presented results were
obtained by the explicit FE code implemented on a
cluster and metacluster computers.

Vertical Barriers

Theoretical analysis and numerical simulations
reveal that to effectively protect from Rayleigh and
Rayleigh—Lamb waves a vertical barrier (Fig. 1) should
satisfy several conditions: (i) the barrier should have a
composite layered structure composed of vertical lay-
ers with contrast physical properties; (ii) depth of the
barrier should be comparable to the wavelength of the
most probable seismic wave; (iii) the protected zone
should be completely surrounded by a barrier to avoid
flowing of the seismic wave inside the protected zone.

Henceforth, all the numerical simulations are done
with Abaqus/Explicit® CAE software.

Figure 4 demonstrates a movie frame related to
numerical simulation of a propagating seismic Ray-
leigh wave interacting with a round-shaped vertical
barrier; the latter completely surrounds the protected
region. The ratio of the wavelength to depth of the
barrier was taken ~ 0.8. This corresponded to the
reference frequency about 7 Hz and the Rayleigh
wavelength 20 m (speed of Rayleigh wave was set as
140 m/s; speed of the transverse bulk wave was
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Fig. 4. Round-shaped composite vertical barrier protecting
from Rayleigh waves: (a) 3D model; (b) cross-section.

~180 m/s); diameter of the protected region was
120 m. Inside the protected region reduction of the
magnitude of displacements was more than ten times
comparing to the outside territory.

Transverse (Horizontal) Barriers

Our analyses revealed that similarly to vertical bar-
riers, the transverse barriers should satisfy several con-
ditions to effectively protect from seismic waves:
(1) length (horizontal) of the barrier should be compa-
rable to the wavelength; (ii) material of the barrier
should have larger density than the ambient soil for
Rayleigh waves; that is in agreement with Chadwick’s
theorem stating that at the clamped surface of a halfs-
pace, no Rayleigh wave can propagate; (iii) material of
the barrier should satisfy the opposite Love’s propagat-
ing condition (4) for protecting from propagating seis-
mic Love waves.

KUZNETSOV

(®)

Fig. 5. 3D model of the horizontal round-shaped barrier
interacting with a long Rayleigh wave: (a) 3D model;
(b) cross-section near the barrier.

Figure 5 demonstrates a movie frame related to
numerical simulation of a propagating seismic Ray-
leigh wave having a long wavelength and interacting
with a round-shaped transverse (horizontal) barrier;
the latter completely surrounds the protected region.
The ratio of the wavelength to length of the barrier was
taken one and a half. Inside the protected region
reduction of the magnitude of displacements was
about three times comparing to magnitude of dis-
placements at the outside territory.

CONCLUDING REMARKS

Herein, a brief outline of future research directions
related to creating more efficient seismic barriers is
given. A practically important case, when seismic bar-
riers appear to be indispensable, is discussed in the last
subsection.
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Fig. 6. A ring-shaped double pile field used to scatter seis-
mic wave energy.

Setting up an Optimization Problem

To make search of the optimal geometric and phys-
ical properties of the protecting barriers more system-
atic, solution of the following optimizing problem can
be suggested. Mathematically the optimization prob-
lem for minimizing magnitudes of deflections can be
written as finding minimum of the following target
function F:

min (F(Cy; py; I hy)
Cppps s By (5)
= (max ma;)([s(oo)m(X, ®)])),

wel xe

where C,, p;, and A, /; are the elasticity tensor, density,
depth, and length of the barrier (in the case of isotro-
pic material, Lamé constants can be used instead of
the elasticity tensor), ® is the angular frequency, Q is a
spectral set, s(w) is the corresponding spectral density,
D denotes the protected zone, and m is the magnitude
of deflections in the protected zone. This problem
resembles one that is usually solved at finding optimal
parameters of shock absorbers (Den Hartog 1985,
Balandin et al. 2000, 2008).

A Barrier Utilizing Concept
of Scattering Seismic Wave Energy

That is another type of seismic barriers. From tech-
nological point of view, such a barrier can be even sim-
pler and possibly cheaper to create than vertical or
horizontal barriers. To demonstrate this concept, con-
sider a ring-shaped pile field as shown on Fig. 6.

While interacting with seismic waves each pile acts
as a scatter obstacle.
ACOUSTICAL PHYSICS Vol. 57
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Arrangement, material, and profile of the piles can
be obtained by an optimization procedure that is sim-
ilar to one outlined in the previous subsection.

Where Seismic Barriers Can Be Most Lificient?

Simple observations reveal that different types of
seismic barriers can be most efficient at soft soils espe-
cially subjected to liquefaction, when more traditional
seismic protection measures can be inadequate.
Indeed, by diminishing amplitude of seismic waves
inside the protected zone, the considered barriers
should improve stability of liquefied soils.

However, for such soils a more complicated analy-
sis of traveling waves involving Biot’s theory of
poroelasticity can be needed; see Detournay E. &
Cheng (1993). It should also be mentioned that
according to the genuine Biot’s theory all governing
equations are linear, that ensures validity of the har-
monic wave approach.
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