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Abstract—Theoretical and experimental results on elastic wave propagation in magnetic nanofluids are pre-
sented. The theoretical results are compared with available experimental data on sound velocity anisotropy in
magnetic nanofluids on various bases. A detailed description is given, using existing theories, of hydrody-
namic modes of magnetized magnetic nanofluids, including new and predicted ones.
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Ferrohydrodynamics is a comparatively new field
of hydrodynamics, which emerged owing to the syn-
thesis of magnetic colloids, called ferrocolloids, fer-
rofluids, magnetic fluids, and, in recent years, mag-
netic nanofluids (MNEFs), since solid ferromagnet or
ferrimagnet particles have a characteristic dimension
of d ~ 10 nm [1]. At such a size, particles are single-
domain and possess a magnetic moment m, =
(chP]V[p)/6, where M, is the saturation magnetization
of the magnet.

To prevent adhesion of particles due to dipole—
dipole interaction, they are coated with a stabilizing
layer, for instance, a surfactant, the choice of which is
determined by the type of carrier liquid. In organic
nonpolar liquids, one stabilizing layer is used, and in
polar liquids, layers of various surfactants are used.
Thus, an MNF is a multiphase medium, and the mix-
ture of the stabilizer and carrier liquid is a dispersion
medium. In terms of magnetic properties, a weakly
concentrated MNF is similar to a superparamagnetic
gas, the particle interaction in which is determined by

the coupling constant A = m; /@PkpT characterizing

the ratio of the dipole—dipole interaction of contact-
ing particles to the energy of heat motion [2]. In
strong magnetic fields at H > mp/d3, particles form
particle chains parallel to the field [2]. MNF magne-
tization is described by the Langevin formula for a
paramagnetic gas:

M = nm,L(mH/kyT), L(&) = coth&—& .

The magnetization dynamics is determined by two
fluctuation mechanisms [3]: the Néel relaxation time
Ty =10 %°, 6 = KV,/kpT as a result of heat fluctu-
ations of the magnetic moment direction inside a par-
ticle with a volume V), the matter of which has an
anisotropy constant K, and the Brownian time of rota-
tional diffusion of the particle itself 1, = 3V ,n/kpT'ina

liquid with shear viscosity 1.

In the physics of magnetic nanofluids, of signifi-
cant interest is the problem of interparticle interac-
tions and a number of questions relating to it: particle
aggregation, the character of magnetic ordering, and
the type of relaxation processes.

Physical acoustic methods are quite sensitive to
structural features of matter and have a number of
advantages in comparison to other methods. In partic-
ular, acoustic studies are conducted in the volume of
matter without violating the structure, which makes it
possible to trace the dynamics of processes occurring
in matter.

First, we consider the experimental results on the
acoustic properties of MNFs in the absence of external
magnetic field. The first measurements of ultrasound
velocity in MNFs were apparently conducted by the
authors of [4], who established that addition, into a
carrier liquid, of particles of a magnetic material lead
to a decrease in ultrasound velocity, and the tempera-
ture dependence is determined by the carrier liquid.
One vear later, study [5] appeared, which contained
only the ultrasound velocity value in kerosene (1275 m/s)
and in an MNF based on it (1201 m/s). The results of
a study by the authors of [6] were more substantive;
they studied the results of the temperature influence
on the propagation velocity of ultrasound in kerosene-
and water-based magnetic fluids and established that
the temperature coefficient of ultrasound velocity in
kerosene-based magnetic fluids is negative when the
volumetric content of magnetite varies in the range of
1.7—10.5%. In the case of a water-based MNF, the
maximum on the temperature dependence of ultra-
sound velocity was discovered, the position of which
changed with a change in the volumetric content of
the magnet; the maximum of the ultrasound velocity
in magnetic fluids was reached at a temperature lower
than in distilled water. In [7], the ultrasound velocity
in a kerosene-based MNF with various magnetite
contents was also measured and, in accordance with
previous studies, it was found that with an increase in
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Table 1. Physical properties of a kerosene-based MNF

Sample KO Kl K2 K3 K4 K5 K6 K7
p, kg/m? 795 879 1018 1103 1240 1325 1565 1767
nx10°Pas 1.0 2.53 3.06 3.74 5.5 7.6 19.9 100.6
¢, m/s 1320 1290 1215 1194 1150 1137 1098 1084
(o/fs ) x 10152 m™! 109 380 630 514 906 889 1210 1997
(o/fa) x 10152 m~! 80 184 333 400 475 986 680 880
(/) x 1085 §2 100 190 400 295 330
Table 2. Physical properties of a water-based MNF

Sample BO Bl B2 B3 B4 B5 B6
p, kg/m? 999 1022 1058 1104 1140 1197 1197
nx10°Pas 1.0 1.11 1.23 1.51 1.97 2.43 2.48
¢, m/s 1486 1477 1468 1445 1426 1420 1419
(a/f7) x 1052 m~! 25 133 281 438 472 730 1265
(0/f3)x 105562 m 25 71 84 1.59 185 230 182

the volumetric fraction of magnetite, the ultrasound
velocity decreased nonlinearly. A more complete study
of the concentration dependence of the ultrasound
velocity in a kerosene-based MINF was conducted in
[8]. Measurements were performed by the pulse-phase
method at a frequency of 2.5 MHz. The volumetric
content of magnetite and the studied samples changed
in the range of 0—27.1%; the ultrasound velocity
changed by 20%, and the wave impedance increased
by almost a factor of 2. Work [9] presented the results
of systematic studies of the propagation velocity of
ultrasound in water-based MNFs, kerosene, and
transformer oil with variation in temperature in the
range 293—353 K. In all types of MNFs, it was
observed that with increasing magnetite concentra-
tion, there was a decrease in the absolute value of tem-
perature and concentration coefficients of ultrasound
velocity.

Like in [6], a shift of the maximum in the temper-
ature dependence of the propagation velocity of ultra-
sound in a water-based MNF was found; the higher
the magnetite concentration, the greater the shift in
the maximum in the lower temperature region. The
first results of studying magnetic fluids by acoustic
spectroscopy in the range of 3—50 MHz were pre-
sented in [10, 11]. Widening of the frequency range,
in comparison to earlier works, made it possible to
discover the relaxation character of ultrasound
attenuation.

The physical properties of certain magnetite-type
MNFs in kerosene (oleic acid was the stabilizer), stud-
ied in [10], are shown in Table 1 and correspond to a
temperature of 7"= 293 K. These samples were pre-
No. 6
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pared with the aim of determining the concentration
dependences of the acoustic parameters by dilution
with kerosene K, of concentrated sample K,. The
ultrasound velocity value corresponds to a frequency
of /i = 3.17 MHz. The attenuation coefficient is also
given for frequencies of f;, = 32.43 MHz and f; =
0.6 GHz. The data in the last line of the table are taken
from [12].

The ultrasound velocity is determined by the bal-
ance between the inertial and elastic properties of the
medium. In weakly concentrated MNFs, magnetite
particles coated by a stabilizing shell cause a signifi-
cant change in density but do not much affect the con-
densability, so that the latter is close to the condens-
ability of the carrier liquid. With an increase in con-
centration, interparticle interaction intensifies and
therefore the assumption on the additivity of condens-
ability is not satisfied. In the indicated frequency
interval, the maximum dispersion of ultrasound veloc-
ity Ac = 20 m/s was found in sample K at a tempera-
ture of 293 K. With growth in temperature, Ac
decreased, and at 7= 333 K, it was absent within the
limits of measurement accuracy. We draw attention to
the fact that at a frequency of 0.6 GHz, the attenuation
coefficient in the samples with a small volumetric con-
tent of magnetite differed insignificantly from the
attenuation coefficient in kerosene.

The properties of the studied water-based MNF
samples [11] at T'= 293 K are given in Table 2.

In samples B,— Bs, the stabilizer was sodium oleate,
and in sample B, it was a series of fatty acids; the solid
phase in all samples was magnetite. It is noteworthy
that the ultrasound velocity in samples Bs and B, were
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almost identical within the limits of measurement
error, but the frequency dependences of the attenua-
tion coefficient differed significantly; i.e., the attenu-
ation coefficient was more sensitive to the MNF com-
position. This is possibly explained by the specifics of
preparing water-based MNFs, since magnetite parti-
cles are coated by a double layer of various surfactants,
and in order to ensure aggregate stability, a second
layer of surfactants was added to the water. In [13, 14],
experimental results were given on measuring the
ultrasound attenuation coefficient at seven frequen-
cies in the range of 3—40 MHz in water-based MNFs
¢ = 0.357 at three temperatures of 10, 20, and 30°C in
the absence of external magnetic field. It was estab-
lished that the ultrasound attenuation coefficient o/f?
decreases nonlinearly with growth in frequency, and at
a fixed frequency it decreases with increasing temper-
ature. These data confirm the results given in [10].

For microinhomogeneous media, to which MNFs
refer, there are two known energy dissipation channels
of ultrasound waves caused by temperature equaliza-
tion at the boundaries of two differently heated media
during a periodic change in the temperature difference
and a jump in velocity due to viscosity at the contact of
media moving with a periodically changing difference
in velocity. We consider a second dissipation channel,
calling it the viscosity mechanism of ultrasound atten-
uation. An analysis of the applicability of this method
to nonmagnetized magnetic fluids was given in [15].

Let a spherical particle of radius » with density p
move at velocity v in a resting liquid having shear vis-
cosity 1. We estimate the relaxation time 1, related to
equalization of the liquid and particle velocities. Writ-
ing the equation of particle motion in the form

4 3 v
-Trp— = 6mrmv,
3 T
we obtain
T, = 2°p/9m. (1)

This is the characteristic time parameter determining
the presence of additional ultrasound attenuation in a
dispersion medium, which apparently was first
pointed out by the authors of the remarkable study
[16]; as was shown in [15], the results [16] and subse-
quent studies [17—19] differed insignificantly. Addi-
tional attenuation of an ultrasound wave propagating
in a viscous liquid in which spherical particles of a het-
erogeneous substance weigh greater, with a density dif-
fering from that of the medium, the smaller the period
of the ultrasound wave in comparison to relaxation
time 1. The main parameter in theory [16] is the ratio
of particle radius r of the penetration depth of a viscous

wave 8, = ./2n/p;0, i.e.,
JE = r/5, )

SOKOLOV

Here, p; is the density of the carrier liquid; ® is the
cyclical frequency of the ultrasound wave. In writing
the equation of motion, the authors of [16] use the
Boussinesq formula for the force of friction acting on
a particle vibrating in the ultrasound wave field. Atten-
uation coefficient o owing to the viscosity mechanism
obtained in [16] has the form

o = 2@(,@(&_1)2 ang) ES
9" chpy (1+ 4E) +E(1+bAE)
where
_ 2 Pr
b = 9(1+2p). @

Here, ¢;is the velocity of ultrasound propagation in the
carrier liquid. For small values of volumetric concen-
tration ¢ of weighted particles a = 1.

In the foreign literature, [17] is usually considered
a pioneering work on the viscosity mechanism. In this
work, the Stokes formula is used for the force of fric-
tion acting on a particle in a; it describes a spherical
pendulum oscillating in a viscous medium. Assuming
that the dissipating energy of ultrasound is equal to the
work of friction force, the author of [17] obtained the
following expression for the ultrasound attenuation
coefficient:

2
o = (_P@(&J_l) %’ (5)
2P s2+(&’+r*)
Py

where

s = 98_”(14.8_”)’ T* = 1+98_n
4r r 2 4r

It is easy to see, with allowance for (2), that expres-
sion (5) coincides with Eq. (3)ata = 1.

As applied to MNFs, the viscosity mechanism of
ultrasound attenuation was theoretically studied by
the authors of [18], who in the case of spherically
shaped particles obtained the expression for the atten-
uation decrement:

2
§* = 9(1_@)(’)1);’)/’)@1’ (6)
2 PPy

where

= 2’&2(1_‘9)%
9 p

Note that this relaxation time 1 differs from (1) by a
factor on the order of unity. Since the viscosity mech-
anism of ultrasound energy dissipation lies at the base
of theory [18], it then seems expedient to introduce
into Eq. (6) in explicit form dimensionless parameter
¢ determined by formula (2). After elementary trans-
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formations with allowance for relation of the attenua-
tion decrement to the attenuation coefficient o =
0d*/c;, Eq. (6) takes the form

2
o = g@a‘ﬁ(&’_l) £, )
97 ey

This expression for the attenuation coefficient is obvi-
ously a particular case of formula (3) at § < 1. Note
that in this approximation and at ¢ = 1, in [20] esti-
mates are given for the contribution of the viscosity
mechanism to ultrasound attenuation in an MNE
Results [18] were refined in [19], in which the follow-
ing formula was given for the attenuation decrement:

1 2 (0]
0F = —m w1 , (8)
2 0+ 5
where
2
Q=1+DJor, m = @M, D, = I&,
PoPs 2
k
S =Jot[D,+(1+D)Jot], D, = 51,
_9_p
o2(1-9)p,

As was shown in [15], these relations transform to

Db«/(D_ = «/E,

_ )’ 2
120 = 20(1-9) pf(gg_l) :,
2 9 P Py

S = {2[1 +2(1 _@)BE}JE+ 1}@;
9 P

therefore, expression (8) fully coincides with (3), but
with the modified coefficient

b= 2[1 +2(1 —(p)&’:|.
9 P

Calculations, performed in [15], of ultrasound
attenuation with the help of relation (3) have shown
that the viscous attenuation mechanism does not
describe the experimental results for water-, kerosene-,
and dodecane-based MNFs. The authors of [21]
attempted to explain the velocity dispersion, discov-
ered in [10], due to the viscosity mechanism [16]. For
this, in [27], the particle size of magnetite was chosen
such that the velocity dispersion value indicated in
[10] was obtained. However, at the particle radius cho-
sen in [21], ultrasound attenuation calculated using
theory [16] exceeds that observed in experiments by
almost a factor of 2, which was shown in [22].

The main difficulties in analyzing the acoustic
spectrum of even nonmagnetized concentrated
ACOUSTICAL PHYSICS Vol. 56
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MNFs, which are non-Newtonian liquids, are related
to violation of the additivity of the contributions of
various ultrasound energy dissipation mechanisms, as
well as with the absence of experimental data on the
frequency dependence of shear viscosity. So, for
instance, the use of shear viscosity values obtained at
small shear velocity lead to an ultrasound attenua-
tion coefficient that exceeds the experimental value.
As is known, a similar situation takes place in poly-
mer solutions.

We now consider the experimental results from
studying the influence of magnetic field on the acous-
tic properties of MNEFs. These results are quite impor-
tant for the development of ferrohydrodynamics.
Indeed, by now, despite the existence of a significant
amount of continual models of nonconducting MNFs
[23], there is still a tendency to construct new models
[24—26]. This is based on the complexity of the mod-
eled medium and the absence of criteria for the appli-
cability of models. In this connection, study of the fea-
tures of propagation of small-amplitude elastic waves
in MNFs occupies a significant place in the develop-
ment of ferrohydrodynamics, since the results of such
studies make it possible now to appraise existing vari-
ous ferrohydrodynamics equations in a linear approx-
imation, under conditions of reliable experimental
data, of course.

However, it has turned out historically that in one
of the first experimental studies on measuring the
influence of magnetic field on the propagation velocity
of ultrasound in a water-based magnetic fluid [27]
contained a methodical error. According to [27], the
change in ultrasound velocity under the action of rela-
tively weak fields (several hundred gauss) is 30—50%.
These data have served as the basis for a number of
inventions, for instance, of various generations of
delay lines, the basis for criticism of theoretical studies
on ultrasound propagation in MNFs. In [28], the
methodical error in [27] was pointed out in the pro-
cessing of experimental data. The authors of [27] used
the phase method to determine the change in the
ultrasound phase velocity in MNFs under the action of
magnetic field; the essence of this method is measure-
ment of the phase shift between two harmonic signals,
one of which passes through an acoustic cell with the
studied MNE and the other, through a delay line. The
phase velocity of an ultrasound wave ¢ is related to
simple formula with ultrasound frequency f, phase @,
and acoustic-cell base length /,

¢ = 2nfl/d. )

Hence, it is easy to find that the relative change in
ultrasound velocity as
Ac _ A_CD’ (10)
c (OB

where A® is the change in the phase during overlap-
ping of the magnetic field. The authors of [27], using
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relation (10), incorrectly chose @, assuming it equal
to the phase shift A®, of the above-mentioned signals
in the absence of magnetic field action. As well, the
denominator in the formula (10) decreases by 2nn,
where 7 is the number of wavelengths A stacked on
acoustic base /. To evaluate reception, we take ¢ equal
to 1430 m/s and, according to [27], / = 9.6 mm, f =
2.44 MHz. The quantity A®, was determined from
[29] by the same authors, which proved to be ~80°.
Consequently, results [27] with the above-men-
tioned parameters were overstated by a factor of
1 + 2nn/AD, ~ 102

In [4], it was noted that no changes in propagation
velocity of ultrasound were caused by homogeneous
and inhomogenous fields of up to 600 E in intensity
acting on a kerosene-based magnetic fluid. The
authors of [9] using the phase method (1 MHz) and
the pulse method (2.5 MHz), did not observe changes
in the propagation velocity of ultrasound in MNFs
based on kerosene, water, and transformer oil with a
change in magnetic field strength to 40 kA/m. In [30],
a study was conducted on magnetic field influence on
the propagation velocity of ultrasound in kerosene-
based MNFs with saturation magnetization of48 kA/m.
Without a field, the ultrasound velocity is 1135 m/s. In
a magnetic field with a strength of 100 kA/m under
collinear positioning of the weight vector and the vec-
tor of the magnetic field strength, the sound velocity
was ¢; = 1139 m/s, and with orthogonal orientation of
the indicated vectors, ¢, = 1137 m/s. It was noted in
[31] that in water-based MNFs with a volumetric
magnetite concentration of up to 8%, ultrasound
velocity with variation in magnetic field strength from
0 to 380 kA/m does not change in either the longitudi-
nal or latitudinal direction relative to the wave vector
of the ultrasound wave.

There are two reasons for such contradictions in
the data of various studies. First, the inadequacy of
experimental methods of the problem being solved.
So,in[4, 9, 30, 31], to determine the field dependence
of ultrasound velocity in MNFs, the method of mea-
suring the absolute value of ultrasound velocity was
used. Naturally, the results of such measurements led
to the conclusion on the absence of magnetic field
influence on ultrasound velocity. In contrast, applica-
tion of such methods seem quite acceptable if the
results of pioneering study [27] are borne in mind.

The main problem that arose in measuring mag-
netic field influence on ultrasound velocity was deter-
mining conditions of the experiment that ensure
reproducibility of the results. The authors of [27, 32]
were the first to encounter this difficulty; to overcome
it, they proposed subjecting a measurable sample of an
MNF to periodic magnetic field action with an induc-
tion of 0.15—0.2 T. However, the use of this technique
in our studies on the ultrasound velocity anisotropy
have shown its invalidity, since the thus obtained
experimental data had low reproducibility.

SOKOLOV

In [33], the dependence of ultrasound attenuation
atafrequency of 2.25 MHz in water-based MNFs with
variation in angle 3 between the weight vector and the
magnetic field direction was studied. The attenuation
coefficient was measured for a fixed angle 3 with an
increase in magnetic field strength to 2.5 kG. It was
discovered that at some angles, an increase in mag-
netic field strength leads first to an increase in attenu-
ation; it then reaches a maximum at H ~ 300 G, after
which it decreases and, passing through a minimum,
again increases nonlinearly. However, at other angles,
for instance, at 3 = 70°, the attenuation coefficient
after switch-on of the magnetic field immediately
begins to decrease, and after passing through a mini-
mum, begins to increase. For a value of H=920 G, a
graph of the angle dependence of the ultrasound
attenuation coefficient is given in [33]. As a conse-
quence [32], these data are described by the formula

o = 7.84(1 +sin’8)(1 - 2sin’9 + 1.25sin* 9); (11)

as well, the following formula is given:

)
o =51 (1+5s1n28)
1 -0.5sin" &

y (1 —2.145sin’ 9 + 1.19sin48)
1-0.5sin° 9

which approximates the angle dependence of the
ultrasound attenuation coefficient at a frequency of
6 MHz for the same MNF as in [33], butat H =450 G.

Results were explained in [34] owing to the contri-
bution of two mechanisms resulting in attenuation
anisotropy. One was described by the expression for
the attenuation coefficient and nematic liquid crys-
tals, and the other was the viscosity mechanism. The
author of [34] proposed that in an MNE spherical
aggregates formed from particles (with the same radius
R, which later arrayed themselves in a chain along the
magnetic field. The force of friction acting on an
aggregate was described by the Stokes formula F' =
—6mnR(v, — v;) (v,, vyare the vibration velocities of
an aggregate and liquid particles, respectively; 1 is the
shear viscosity of the carrier liquid. In addition, the
force of elasticity of a chain of aggregates in a field was
introduced ad hoc:

F = —kAxsin3, (12)

where 3 is the angle between the weight vector of the
ultrasound wave and the magnetic field direction, and
Ax is displacement of the aggregate in the ultrasound
wave. The ultrasound attenuation coefficient due to
the viscosity mechanism was described by expression
[34]:

o = 3nan3Van(6nnR+praoo)/cf

(13)
(xsind — paVooz)2 + (6TCT‘|R(D)2
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where V, is the volume of the aggregate, ¢,is the ultra-
sound velocity in the carrier liquid, and # is the num-
ber of aggregates in a unit of volume. Hence, at kK =0,
it follows that

o = 3nnRoo3VN(6m]R+ pw)/c,

(14)
(p. Vo) + (611 Rw)’

This relation describes the contribution of only the
viscosity mechanism of attenuation and therefore it
should turn to zero in the limiting case corresponding
to equality of the densities of the carrier liquid p,and
aggregate p,. It is easy to see that expression (14) does
not satisfy this requirement; therefore, formula (13)
should be considered erroneous.

In [35], ultrasound attenuation in an MNF with
ellipsoidal aggregates with an orthogonal orientation
of the weight vector of the ultrasound wave and the
magnetic field direction was studied. In addition to the
viscosity mechanism, the contribution to ultrasound
attenuation due to the presence of repulsion forces of
a dipole nature between magnetized aggregates was
considered.

Ultrasound attenuation in an MNE the particle of
the solid phase of which form the ellipsoidal aggre-
gates, was considered in [36, 37]. It was supposed that
ellipsoidal aggregates have equal size with a fixed value
of the external magnetic field strength. The dipole
moment of an aggregate was determined by the
expression p = 4]\/[1,Tcazb/ 3, where quantities ¢ and b
are, respectively, the large and small semiaxes of an
ellipsoidal aggregate; M, is the saturation magnetiza-
tion of matter of the solid phase of an MNE It was
supposed that the magnetic field strength was large
enough that the long axes of ellipsoids were oriented
along the magnetic field direction. Allowance was
made only for forces of dipole repulsion between
neighboring ellipsoids located at distance /, the size of
which depends on temperature, the magnetic field
strength, and the concentration of the solid phase.
Propagation of an ultrasound wave at an angle of 3
toward the magnetic field direction causes a shift in
ellipsoid Ax; the repulsion forces due to dipole—dipole
interaction F; = —xAxsin §, where k = 6,p?/nl>, tend
to return an ellipsoid to its former location. Therefore,
the restoring force (12) introduced in [34] has a dipole
nature. For the force of friction acting on an ellipsoid
vibrating with a velocity of v, with a volume of V, in an
ultrasound wave, the Stokes formula was used:

d( Vo — Vf)

F=—pV
pfaT dt

—p,05(v,— vy),
where

T = L+§(6n/b)K2,
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S = 3(6n/b)Kz(1 +(1/K))(3, /a)K".

The angle dependences of inertial coefficient L enter-
ing into the expression for additional mass and friction
coefficient K of an ellipsoidal aggregate with random
orientation of its long axis relative to the weight vector
of the ultrasound wave, were determined from symme-
try notions by the relation

L= L”00528+LLsin28,
K= I(”COSZS+KLSH’128.

Quantities I, L, K|, K, are given by the formulas pre-
sented in [38].

The ultrasound attenuation coefficient in an MNF
with ellipsoidal aggregates is determined by the

expression
(&, L KsinS)2
P 2
- %(p@ L O pr; . (15)
cf(&, o KZSII’IS) L g
Pr o p;

It is interesting that when the densities of the aggregate
and the carrier liquid are equal, formula (15) takes the
form

— l (i) o pra
2 cf(&, KSil’lS) 2 &
Py o’pV;

This attenuation coefficient is based only on dipole
interaction of neighboring aggregates, as a result of
which the vibration velocity of aggregates in a sonic
wave differs from that of the particles of the liquid.
Experimentally, such a situation can take place in an
emulsion based on an MNE In another limiting case,
atk =0, i.e., in the absence of dipole—dipole interac-
tion, expression (15) coincides in accuracy with the
formula for the attenuation coefficient calculated in
[39]. In [40] the amplitude of the signal that passed
through the MNF was measured from the magnetic
field strength, and it was discovered that in a narrow
range of values of magnetic field strength, ultrasound
attenuation sharply increased.

Recently, there has been a tendency to study
changes in ultrasound velocity and attenuation in non-
equilibrium conditions due to overlapping of a mag-
netic field changing in time at a given rate. So, the
authors of [41] measured the attenuation coefficient
in a water-based MNF with a collinear and orthogo-
nal magnetic field orientation with variation in the
rate of magnetic field growth from 15 A m!s ! to
1.5kA m ! s, and they obtained rather various field
dependences. However, in the majority of them, reso-
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nance ultrasound attenuation was observed, which
had been discovered earlier in [40]. The author of [42]
experimentally studied the increase with a frequency
of 1.6 MHz under magnetic field action on a water-
based MNE, with various growth rates—16, 48, 136,
480 A m ! s~!'—with collinear orientation of the mag-
netic field and wave vector. The maximum magnetic
field strength was 80 kA/m. At all rates of growth in
magnetic field strength, the increase in ultrasound
velocity did not exceed 25 m/s, but the steady-state
value of velocity was established more rapidly at a
higher rate of growth in magnetic field strength. An
interesting time dependence was discovered in [43], of
the relative change in ultrasound velocity in a water-
based MNF with a change in the magnetizing field to
530 mT with various rates of its growth. The observa-
tion time was determined by achievement of the indi-
cated maximum induction. It turned out that at a rate
of field growth of 5.30 mT/min, the ultrasound veloc-
ity reached a maximum after an hour, and then it
began to decrease over the course of the entire obser-
vation time of ~100 min. At a maximum rate of field
growth of 42.4 mT/min, ultrasound velocity increased
linearly over the course of the entire measurement
time of ~10 min.

In [44], angle dependences of the attenuation coef-
ficient were obtained for a water-based MNF with
overlapping of the external magnetic field, the growth
rate of which was 200 A m~! s~!. The field dependences
of attenuation were determined at a fixed angle 3.
Anisotropy of attenuation Ao = o(3) — a(rn/2) with
growth in the magnetic field strength increased mono-
tonically, and the maximum value was Ao, ~ 2 m™L.

The authors of [45] proposed a new mechanism of
ultrasound energy dissipation in magnetized MNFs
due to vibration of two particles (dimers) in a viscous
medium, the change of the mean distance between
which had a relaxation character and depended on the
angle formed by the dimer axis and the wave vector of
the ultrasound wave. Using this mechanism, experi-
mental results [44] were explained. The angle depen-
dence of a normalized attenuation coefficient was cal-
culated by the formula

a(®) —a(n/2) _ 2(1—S)cosZS+3Scos48
o(0)—a(n/2) 2+

where S(, &) is the order parameter. The right-hand
side of this expression is a nonnegative function at all
allowable values of the parameters entering into it;
therefore, using this mechanism, it is impossible to
explain experimental results [32, 33].

The kinetics of structural changes in a kerosene-
based MNF located in an inhomogeneous magnetic
field was studied in [46]. When a magnetic field is
switched on that is collinear to the wave vector, the
ultrasound attenuation coefficient increases slowly,
reaching a maximum value which weakly depends on
the field strength. Further the coefficient decreases

., (16)
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insignificantly and then again increased up to achiev-
ing a constant value. When the field was switched off,
the attenuation coefficient to a smaller value in com-
parison to its initial one in the absence of field. The
strength of H < 60 KA/m, the ultrasound attenuation
coefficient having passed through a maximum,
increased to the value at the moment the field was
turned on.

The time it takes to achieve a maximum and a con-
stant value of attenuation depends on the field
strength, growing as it decreases: at 118 kA/m, it is
~230 s; at 90 kA/m, ~260 s; and at 60 kA/m, 280 s.
A repeat of the results was achieved after intense mix-
ing of the liquid. With repeat overlapping of the mag-
netic field, a sharp maximum of the attenuation coef-
ficient was observed, significantly depending on the
magnetic field strength. Further, attenuation
decreased and, having passed through a minimum,
increased to a certain constant value, also depending
on H. The time it takes for a constant value of the
attenuation coefficient to be established decreases
with an increase in magnetic field strength; however,
this time is significantly less than for the initial sample.
Subsequent switch-ons of the magnetic field with
changing intensity did not change the character of
ultrasound attenuation behavior. Switching off the
field led to a decrease in attenuation to the initial
level within several seconds, which apparently is
explained by recession of chains from the region of
the ultrasound beam. In this connection, it seemed
expedient to measure the acoustic parameters in
equilibrium conditions, which allowed the formation
of particle chains and their distribution in the volume
of the liquid.

These structural changes are determined by diffu-
sion processes, for the completion of which, as it
turned out, sufficiently large time intervals are
required. The specifics of MNFs were accounted for
by the fact that the magnetic field was created with
permanent magnets, since it had been experimentally
established that the holding time of the MNF sample
in the field, ensuring reproducibility of results, were
tens and hundreds of hours. To obtain the angle
dependences of the acoustic properties, permanent
magnets were set up on a rotating platform. Thermo-
statting of the measuring cell was ensured with an
accuracy of ¥0.05. In [47] experimental results were
presented on the anisotropy of ultrasound velocity and
attenuation in kerosene- and dodecane-based MNFs,
measured at a frequency of 2.7 MHz. Magnetization
of samples was carried out in the field of a permanent
magnet with an intensity of 2.7 kG with variation in
temperature from 293 to 333 K.

Figure 1 shows the anisotropy of velocity in a kero-
sene-based MNF at 293 K. The exposure time of the
sample in a magnetic field was about 100 h. Figure 2
shows the dependence of the anisotropy of ultrasound
velocity in an dodecane-based MNF at 293 K for two
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cases: squares correspond to an MNF located in a
magnetic field for 10 h, and circles, for 200 h.

The frequency dependence of anisotropy of the
propagation velocity of ultrasound was measured in a
water-based MNEF, the stabilization of colloid parti-
cles in which was carried out with sodium oleate [48].
The main parameters of the magnetic fluid were as
follows: saturation magnetization, 12 kA/m; density,
1148 kg/cm?; and ultrasound velocity in a nonmagne-
tized state, 1481 m/s. The values of these parameters
correspond to a temperature of 293 K. Before mea-
surements were begun, the acoustic cell with the mag-
netic fluid was kept in a magnetic field with a strength
of 2.7 kG for about 50 h, and then measurements were
conducted. The experimental results, presented in
Fig. 3, correspond to a temperature of 293 K.

As is seen, the frequency dependence of anisotropy
of the ultrasound velocity manifests itself the most dis-
tinctly at small angles 3. In recent work [49], the
dependence of anisotropy on frequency in water- and
kerosene-based MNFs was measured.

Figure 4 shows the anisotropy of the ultrasound
attenuation coefficient. Triangles correspond to a ker-
osene-based MNF, measurements were conducted at
333 K [47]. Experimental data denoted by circles were
obtained for a water-based MNF with holding in
1.5-kG magnetic field for about 150 h, after which
reproducibility of results was achieved [50]. However,
with a change in angle 9, a non-steady-state behavior
of amplitude of the received signal was observed; only
after 3—10 min did the signal level achieve a constant
value, which was measured in experiment [50].

The angle dependences of ultrasound attenuation
and velocity in a water-based MNF depend on the
particle concentration of the magnet [51]. Ina 1.5-kG
magnetic field in a weakly concentrated MNE the
ultrasound velocity and attenuation coefficient mono-
tonically increase with an increase in angle 3, reaching
a maximum at 3 = /2. In a concentrated MNF under
the same experimental conditions, these dependences
have a directly opposite character [51]. Note that these
experimental data cannot be explained using the
attenuation mechanism suggested in [45].

In [5], the field dependences of the ultrasound
velocity anisotropy in a water-based MNF with a den-
sity of 1380 kg/m?, a magnetite mass particle concen-
tration 0f 40%, and saturation magnetization of 38 mT
were obtained for the first time. The anisotropies of
ultrasound velocity with a frequency of 1 MHz were
measured for four values of induction of the magnetiz-
ing field: 50, 150, 250, and 350 mT at a fixed temper-
ature of 293 K. The character of the angle depen-
dences relative to the change in velocity changed with
an increase in field. Figure 5 shows the experimental
data (circles) at B= 50 mT, and Fig. 6, at B=350 mT
[52]. These data were theoretically described in [53],
and the results of calculations are shown by solid lines
in Figs. 5 and 6.
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Fig. 1. Anisotropy of ultrasound velocity in a kerosene-
based MNE
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Fig. 2. Anisotropy of ultrasound velocity in an dodecane-
based MNE

Generalizing the obtained experimental results, we
can highlight four types of angle dependence of ultra-
sound velocity: (1) the velocity reaches a maximum
with parallel orientation of the wave vector and mag-
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Fig. 3. Frequency dependence of anisotropy of ultrasound
propagation in a water-based MNE
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Fig. 4. Anisotropy of ultrasound attenuation in kerosene-
and water-based MNFs.

netic field direction, and the minimum is reached with
orthogonal orientation; (2) the velocity reaches a
maximum also with parallel orientation of the wave
vector and the magnetic field direction, but it reaches
a minimum at an orientation that differs from orthog-
onal; (3) the velocity has a maximum at a certain ori-
entation differing from parallel and orthogonal; (4)
the velocity reaches a maximum with orthogonal ori-
entation, and the minimum is reached with parallel
orientation.

Therefore, we can conclude that at least two mech-
anisms making opposite contributions are responsible
for the anisotropy of ultrasound velocity in magnetized
magnetic fluids.

Thus, the experimental data known to date on
magnetic field influence on ultrasound velocity in an
MNF confirm the conclusion of [28] on the methodi-
cal error committed by the authors of [27], since the
100-fold decreased data [27] agree with the data pre-
sented above. Further we consider the results of theo-
retical studies of magnetic field influence on the
acoustic properties of MNFs.

The relaxation mechanism of sound attenuation in
an MNF due to the finiteness of the time of the estab-
lishment of equilibrium magnetization was suggested
by the authors of [54], who considered the case of col-
linear orientation of wave vector of the sound wave and
the magnetic field strength and obtained the following
relations or the attenuation coefficient,

¢ 2
at=(°°3) T (17)
2¢c (1+0'1)

and for sound velocity,

2 2 4 M*

= CO + T 1A N b
p(l1+ 12wy L")
where the following notation was introduced: t =
/(1 + 127y L"),  is susceptibility; L' is the derivative
of the Langevin function; ¢, is the velocity of sound in
the high frequency limit, equal to

2
2 2 4nM
C[,3 = CO + .

Hence it follows that the maximum relative change in
sound velocity is

Ac _ 2nM’

2
€ (oo

. (18)

For an estimate, we put M =100 G, p =1 g/cm?, ¢, =
10° cm/s and find that the maximum relative increase
in ultrasound velocity is 6 x 107,

At present, the main theory describing the dynamic
processes in MNFs is ferrohydrodynamics with allow-
ance for internal rotation. In [55], to determine the
spectrum of eigenmodes of an MNF having an inter-
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Fig. 5. Anisotropy of ultrasound velocity in a water-based
MNF at B=50 mT.

nal angular momentum S, the following system of
equations were used, which was obtained in [56, 57]:

p[g—‘; + (VV)V} =-Vp- V[%S - IQ)}

+(MV)H + nAv + Zlv X (S—IQ),
TS

op
= +V =0,
5, T V(PY)
M, wWwM (19)
o1
= Lm-m ) Ivcsomvy,
Tp H 1
9 4 (wW)S = - L(S-19)+MxH-SVv,
ot Tg
VxH =0, VH+41M = 0.

Here, I is the moment of inertia of particles contained
in a volume unit of a liquid; 1 is the time of particle
rotation decay in a viscous liquid; and 2Q =V x v. In
the ultrasound frequency region, the inequality @ty << 1
is justified, which makes it possible to ignore particle
No. 6
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Fig. 6. Anisotropy of ultrasound velocity in a water-based
MNF at B=350 mT.

spin and to use the steady-state equation in order to
determine the internal angular momentum:

S+1t,V(v-S) = IQ+t M x H. (20)
Using system of equations (19) with allowance for
(20), the authors of [55] studied the propagation of
small perturbations in an MNF with an internal angu-
lar momentum. They established that with orthogonal
orientation of the wave factor of a sound wave and
magnetic field intensity H, the velocity and decrement
of attenuation 6 of ultrasound do not depend on inten-
sity, but with parallel orientation of the indicated vec-
tors, the rate and decrement of attenuation & are given
by the relations

2

c=coll+ 8nX(QzATB) 2} (1)
(1+4ny,) +(oTp)

5 = 8m(1 +4TCXd)X(QTB)2 (22)

(1 +4my,) +(01,)']

So, the sound velocity has a relaxation character, and
the timescale is determined by the Brownian time of
orientational relaxation of magnetic moment t5. The
dependence on magnetic properties is determined by
the static y and differential y, magnetic susceptibili-
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ties. Introducing notation t = t5/(1 + 4my,), we
rewrite the above-mentioned relations in the form

2 2.2
pey (1+w71p)
2 2
o = 2 M 0T (24)

pcS (1+ ooztz)
The obtained attenuation coefficient (24) corre-
sponds in accuracy with (17). The relative increase in

sound velocity in the high frequency limit ot > 1 cor-
responds to (18). For further explanation, the Alfven

frequency Q, = J/y/4p Hk found in [55] is of interest;
as well, the authors note that in fact there is no Alfven
branch in a magnetic fluid due to strong attenuation.
Therefore, frequency Q, only characterizes interac-
tion modes of various type. Nevertheless, we write the
expression for the propagation velocity of an Alfven
mode:

(25)

The authors of [58] especially emphasized the
importance of experimental and theoretical study of
the anisotropy of the acoustic properties of magnetic
fluids, since precisely study of the anisotropy of acous-
tical properties allows one to make a substantiated
choice between the following two equations of magne-
tization motion for an ideal MNF:

M v vIM+IMx(Vxv) =0, (26)
o1 2

and
E%/I+V><(Mxv)+v(V-M):O. 27)

If magnetization changes in accordance with (26),
then the dependence of sound velocity on magnetic
field is determined by the expression

H, 2
¢ = 63——0[(2+v)@§> +vp(a—%) } (28)
87 op/ ¢ op” 1

which contains the contribution due to be magneto-
striction effect:

2 2
- (@) 2]
8 L\Op/ op” r

Here y = C,/Cy and i is magnetic permeability. As is
seen from (28), the sound velocity in this case is isotro-
pic. If Eq. (27) is justified, then the sound velocity
should be anisotropic, and with collinear orientation
of the wave vector and magnetic field direction, it is
described by expression (29), and with orthogonal ori-
entation, by expression (28).

(29)
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The magnetostrictive mechanism of anisotropy of
ultrasound velocity was considered in [59], where the
following relation was obtained, which describes the
anisotropy of sound velocity:

2
¢ = c§+ M[l + 9(6_:9 :|00528, (30)
P XNOP
from which follows
2
Ac _ 275_]‘24[1 +9(Q§) :|COSZS. 31)
o pcy xNOP g

Note that formula (30) leads to an increase in ultra-
sound velocity due to magnetostriction, which contra-
dicts the conclusion of [58]. The maximum value of
the relative increase in ultrasound velocity determined
by relation (31) at 3 = 0 coincides with (18).

In [60], the following relation was the result of the-
oretical study of magnetic field influence on the sound
propagation velocity in an MNF:

2 2 oM 1-cos'9
¢ =cy- ,

p ( M) 2
1= (5 - uM)cos’s
X~ H fcos

which predicts the maximum value of the relative
decrease in ultrasound velocity, coinciding in modulus
with (18).

The authors of [61], using the theory that uses (26)
to describe the magnetization motion, highlighted the
following relation to take into account the effect of the
magnetic field on ultrasound velocity:

2 2
= cg_M[(fz@pc) X cos’s
py L\xop/ 1+

()]
2y 6p2

which according to its estimate gives a relative change

in sound velocity significantly smaller than 10~%.

The analogy of magnetic fluids to nematic liquid
crystals was first used in [62]. The role of a director in
the case of an MNF was played by a unit vector
directed along the magnetization vector. However, in
contrast to liquid crystals, in the equation of director
motion, the inertial component was taken into

account, which in the final analysis resulted in the
existence within this theory of so-called natural reso-

nance, the frequency of which is o, = /m,H/I, where

m, is the magnetization density, 7 is the density of the
moment of inertia, and H is the magnetic field
strength. Another characteristic time parameter
appeared in theory [62] as a result of allowance, in the
equation of director motion, of the rotation moment
caused by the viscosity and determined with the vis-

(32)

(33)

ACOUSTICAL PHYSICS VWl 56 No. 6 2010



WAVE PROPAGATION IN MAGNETIC NANOFLUIDS

cosity coefficients of torsion in velocity gradient y; and
¥, (A =7,/v). The time of relaxation of director fluctu-
ations 7t is given by the formula © = y;/myH. The
dependence of sound velocity on the size and direction
of magnetic field magnetization is described by the

relation
Xzylw(l (oj
>0 2
Poco o

c=¢ll+o

(34)

o7 .2
X sin 23 |.

12T

For the attenuation coefficient, the following expres-
sion was obtained in [62]:

2 2
O _ A7 0
== ‘P—z(l __ﬁj
Q)] 8p0C0 Q)]

(35)

o7 .2
X sin” 29.

(-2

According to the author of [62], at ot > 1, from (34)
it follows that the relative increase in ultrasound veloc-
ity is 1074—107>,

An analogy of a magnetic fluid to a nematic liquid
crystal was also made by the author of [63] with the
aim of obtaining ferrohydrodynamic equations with
an internal angular momentum. However, in this, a
totally unsubstantiated assumption on equality of
parameter A to zero is made, the consequence of
which was the disappearance of anisotropy of the
acoustic properties of a magnetic fluid within the
framework of theory [62] (see also (34) and (35)). In
addition, the authors of [63] introduced, without sub-
stantiation, the Frank modulus (torsion modulus) for
a magnetic fluid. Study [64] contains the opposite
conclusion: there are no torsion moduli in a magnetic
fluid, and parameter A # 0. In [64] yet another system
of ferrohydrodynamic equations was introduced pre-
cisely to explain the anisotropy of the acoustical prop-
erties of a magnetic fluid. It is supposed that a chain of
magnetic particles in a magnetic field possesses elastic
properties characterized by elasticity coefficient y*.
This elasticity arises owing to balance of forces acting
between particles, namely: dipole—dipole interaction
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results in particle attraction to each other, and their
repulsion occurs due to the presence of surfactant
shells on the particle surface. The results of [64]
reduced to the following equations for angle depen-
dences: ultrasound velocity,

2
22 XEmy

¢ =cp+ 00548, (36)
Po
and attenuation decrement,
Y *mé 4
o = cos 9. (37
PoCo@Ty,

Here, t,, denotes the time of relaxation of magnetiza-
tion, and m, denotes the magnetization density. A new
hydrodynamic mode introduced in [64] is of interest,
which the authors call magnetoelasticity; it propagates

at a velocity of
v = moNx*/ Py

Thus, the theoretical results listed above on the
influence of magnetic field on ultrasound velocity dif-
fer from experimental results by three orders. In this
connection, a new approach to ferrohydrodynamics
was proposed, based on the concept of frozen-in of
magnetization. To derive ferrohydrodynamic equa-
tions, the generalized principle of virtual displace-
ments for continuous heat-conducting magnetized
media was applied in the formulation of V.V. Tolma-
chev [65]:

(38)

(U-TyS+pV+ W)

(39)
- J.p(fl.S*qi)dV+ j (F5*q,)do.
v

ov

Given variational equation is satisfied for a continuous
body of volume V' limited by surface oV placed into a
thermostat with temperature 7, at a fixed external
pressure p, and is justified with random virtual shifts
0*q,; from a position of equilibrium. Here, U, S, W
denote the internal energy, entropy, and magnetic field
energy, respectively; f represents volumetric forces;
and F represents surface forces. Symbol 6* stands for
Lagrange variation. This principle makes it possible to
isolate from among possible virtual states of a contin-
uous body that state which in fact is equilibrium under
the given external conditions. A distinct feature of the
indicated variational principle is consideration of the
finite volume of a continuous body, which makes it
possible to obtain equilibrium conditions not only in
the volume, but also on the surface.

The ferrohydrodynamic equations were introduced
for two limiting cases. One corresponds to the assump-
tion on equilibrium magnetization of a magnetic fluid
[66]; i.e., the relaxation time of magnetization to an
equilibrium value was assumed to be infinitely small.
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The obtained equations coincided with the equations
of quasi-steady-state ferrohydrodynamics. However,
in deriving these equations, a new condition of ther-
modynamic equilibrium of an MNF in an external
magnetic field H was obtained:

(&

6 b
which means that, in the state of thermodynamic
equilibrium in the neighborhood of any point of the

liquid, the magnetic field strength is equal to the ther-
modynamic equilibrium strength, determined by the

relation
0 o5

This condition of magnetic equilibrium in essence
represents the general form of the material equation
for the electrodynamics of a continuous medium with
allowance for its thermodynamic properties. Indeed,
using the known function of specific internal energy e,
from the condition of magnetic equilibrium follows
the relationship between magnetization of the
medium and the magnetic field strength [66]. A simi-
lar result was obtained in describing the dynamic pro-
cesses of magnetization of an MNF [24]. A similar
interpretation of the material relation for dielectrics
was given in [67]. Another limiting case corresponded
to the assumption of freezing magnetization into a
magnetic fluid [68]; here, the relaxation time of mag-
netization of a magnetic field to an equilibrium value
is infinitely large. The equation for frozen-in of mag-
netization has the form

6%;[ =(M-V)vy-MV -v,

(40)

(41)

(42)

which with allowance for the continuity equation can
be rewritten for a specific magnetization:

dm _ (m- V)v.

dt “3)

Note that equation of motion (27) applied in [58] is
the equation of frozen-in of magnetization and after sim-
ple transformations coincides with (42). Equation (43) in
form and accuracy coincides with the equation of fro-
zen-in for a specific intensity of a magnetic field in an
ideal liquid with infinite conductivity [69]. The physi-
cal grounds for introducing this limiting case was
description of dynamic processes, in particular, ultra-
sound propagation in an MNE Using the data of
Tables 1 and 2, we can confirm that ultrasound atten-
uation o at wavelength 2 satisfies the inequality oA << 1;
therefore, to take into account the influence of exter-
nal magnetic field on ultrasound velocity, an approxi-
mation of an ideal liquid was used. A complete system
of equations was given in [70] for a magnetic fluid with
frozen-in magnetization with allowance for dissipative
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processes, in particular, finiteness of the relaxation
time T of magnetization of a magnetic field to an equi-
librium value. In this case, equation of motion of mag-
netization (43) changes due to the addition of the
relaxation term

Jdm _
dt

eq
p(m-V)v+H_H .

(44)

The system of equations describing an ideal non-
conducting MNF of density p with frozen-in magne-
tization M = pm and which moves at velocity v
includes the following equations [68]:

LoV _
6t 0x; 0.
q
p@_v,- _ (5~ H)ﬁ(M) 6He
ot 6x X; 6xk
dm, ov;
w " ey
’ (45)
95, 08 = 0,
ot 6x
(@) 05
* = om r=ra)
P, s 5
=2 vy = 4g20m)
0x; 0x;

J

The last two equations of the system are the magneto-
static Maxwell equations, where W is the scalar poten-
tial of the magnetic field. The system is closed by
assigning the function of specific internal energy € =
€(p, s, m). In [71], the Hamiltonian form of these
equations is given.

With linearized system of equations (45), the
hydrodynamic modes of an MNF with frozen-in mag-
netization were obtained [72, 73]. Expansion of the
internal energy near the background state had the
form

€(p,s,m) = €+ Bijmimj+ oL P, 46)
where

&_q#e) azwﬁa

YT 2emom/, ) T 2\emap/ )

Phenomenological coefficients 3; and o, characterize
the magnetoelastic and magnetostrictive properties,
respectively. In solving linearized system (45), the
external magnetic field is assumed to be directed along
the z axis; therefore, in this geometry, tensor [3; is diag-
onal with the components 3, = ,, =B, B, = B; vec-
tor @ has the components o, = o, = o}, o, = oy It
turned out that in an MNF with frozen-in magnetiza-
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tion, fast and slow magnetosonic waves and Alfven-
type waves can propagate.

The propagation velocities of fast ¢, and slow ¢,
magnetosonic waves are determined by the formula

()

47
- %J(l+B1—A1iJBz+B3—2A1+A2—D). “7)
2

The plus sign corresponds to the velocity of a fast mag-
netosonic wave, and the minus sign, to a slow one.
This formula has been written for a change in angle 3
in the limits from 0 to 90°. Here, the following nota-
tions were introduced:

B, = a,(1+P)cos 9,

2 2
B, = [1-a;(1-B)cos’ 3], B = B/B.
.2 2 2
By = a,(1-B)sin"29, a, = myB,/cp,
a, = pomat,/co, o = o/,

A, = 2a,(sin9 + acos$)cos I,
A, = 4a§(1 + Otz)COS29,

D = 4a,a,(1 - B)(sin3 —occosS)cos38.

The propagation velocity of an Alfven-type wave is
determined by the relation

cy = mOJECOSS.

In the examined Alfven-type waves, magnetization
oscillates in contrast to an Alfven wave propagating in
the liquid with infinitely large conductivity in which
the intensity of magnetic field frozen into a liquid
oscillates.

In the limit of zero magnetization, from (47) it fol-
lows that a fast magnetosonic wave passes to a com-
mon sound wave, and the velocity of a slow magneto-
sonic wave and an Alfven-type wave turn to zero. Fig-
ure 7 shows the qualitative character of the angle
dependences of ultrasound velocity inan MNF predicted
by the present theory. To calculate from formula (47)
the velocity of a fast magnetosonic wave, the follow-
ing parameter values were used: ¢, = 10° cm/s, p, =
1 g/cm?, my = 20 G. Curve I describes the ultrasound

(48)
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Fig. 7. Theoretical angle dependences of ultrasound
velocity.

velocity anisotropy due only to the magnetoelastic
mechanism (B = B, = 10°g/cm?); curve 2, due only to
the magnetostrictive mechanism (o = a,; = 5 x 10°E
cm?’/g); and curves 3 and 4 are the result of their com-
bined manifestation at the indicated parameters—as
well, curve 4 was obtained at 3 = 106 g/cm3, B, =5 x
10 g/cm?. It is easy to see that the presented qualita-
tively different theoretical angle dependences of ultra-
sound velocity were observed experimentally. Thus,
the anisotropy of the elastic properties of MNFs
results from both anisotropy of the magnetostrictive
properties and anisotropy of magnetoelastic interac-
tion.

Figure 8 shows a comparison of experimental
results [14] with those calculated by relation (47) for a
fast magnetosonic wave (solid curve) at the following
parameters: ¢, = 1.4356 x 10° cm/s, p, = 1.166 g/cm?,
My=14.7G, B;=3.5x10°g/cm’, B, =9 x 10> g/cm’.

In the case of the determining role of magnetoelas-
tic interaction, for instance, in Fig. 8, expression (47)
for the propagation velocities of magnetosonic waves
takes the form

2
Cris) = f/—% (1+c—*2‘(1+[3)ji (1+

Co

ACOUSTICAL PHYSICS Vol. 56 No. 6 2010

2 2 2
%*([34)} +4%4(1 - B)sin’9; (49)

Co Co



986

c, m/s
1438.0

1436.5

1436.0

1435.5 ‘ ' ‘ :
0 20 40 60 80 9§°

Fig. 8. Anisotropy of ultrasound velocity in a water-based
MNF at H=8kAm™".

the propagation velocity of an Alfven-type wave is
determined by (48). At 9 = 0, the propagation veloc-
ities of slow magnetosonic and Alfven-type waves

coincide:
¢, =c¢y = mJ[?TL (50)

It is important that the propagation velocities of slow
magnetosonic and Alfven-type waves decrease, but in
a different way, with an increase in angle 3, and at 3 =
1t/2, these waves do not propagate. It is necessary to
take this into account when experimentally checking
the suggested theory. Note that formulas (25) and (38)
are quite close in structure to (50), but in the frame-
work of the considered theory, a wave whose velocity is
determined by expression (25) is an Alfven-type wave,
and a wave whose velocity is determined by relation
(38) is a slow magnetosonic wave. We also point out
[74], in which the existence of a transverse wave in an
uncompressed MNF was predicted, the velocity of

Table 3. Properties of a magnetized suspension
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which was determined by a relation coinciding with
(25). In [75], the eigenvectors were calculated for the
hydrodynamic modes of an MNE in which only the
magnetoelastic mechanism was taken into account,
and it was shown that an Alfven-type wave is trans-
verse, and fast and slow magnetosonic waves are mixed
plane-polarized.

The predicted slow magnetosonic wave in an MNF
has not been found to date.

However, the authors of [76] discovered experi-
mentally the propagation of fast and slow waves in a
magnetized suspension consisting of glycerin and
spherical iron particles. They discussed the discovered
slow magnetosonic wave using the Biot theory, which
describes wave propagation in a porous body saturated
with the liquid. The fallibility of this explanation by
the Biot theory was pointed out in [77], since a slow
wave propagates only when there is an external mag-
netic field, and the authors offered another explana-
tion on the existence of a slow wave using a theory that
they had developed earlier [64]. According to [64], in
a magnetic fluid, there should exist a new elastic mode
due to longitudinal vibrations in chains of magnetic
particles, and it should not be a hydrodynamic mode,
since a boundary frequency exists lower than which
this mode is not excited. Experimental results [76]
were described in [73] using the theory of wave propa-
gation in a magnetic fluid with frozen-in magnetiza-
tion. The suspension studied in [76] was prepared by
addition of spherical iron particles to glycerin, the size
of which were in the limits of 3—25 um. The measuring
cell with the suspension was placed into a magnetic
coil, the current force in which varied from 0 to 35 A.
The angle was equal to zero. The measuring cell had a
diameter of 3 c¢cm, and its length varied from 0 to
60 cm. In the absence of a magnetic field, only a fast
magnetosonic wave was observed. The values of the
propagation velocities of fast and slow magnetosonic
waves, as well as the magnetic field strength at which
they were measured, were determined from the graphs
of [76]. These data are given in Table 3.

To apply relation (50), it is necessary to bear in
mind the dependence, given in [76], of the iron parti-
cle concentration in the region of the acoustic channel
on the size of the magnetic field strength. The exist-
ence of such a dependence can be explained by mani-
festation of the force of dipole—dipole repulsion of

H,G 60 130 180 250 310 370 430 490
¢, m/s 35.5 38.5 40 42.5 44.5 45.5 46.5 47.5
¢, m/s 1320 1560 1680 1740 1760 1800 1820 1850
O 0.167 0.113 0.090 0.072 0.064 0.059 0.056 0.054
m, G cm®/g 121.5 96.7 83.7 71.5 65.2 61.3 59.0 57.6
B, x 1073, g/cm? 0.85 1.56 2.28 3.53 4.67 5.51 6.22 6.80
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neighboring particle chains; as well, with an increase
in the strength of the magnetizing field, the lengths of
chains increase and, consequently, the force of repul-
sion between them increases. According to [76], an
analytical expression describing the dependence of the
volumetric concentration of particles in the region of
wave propagation on the magnetic field strength has
the form

Oen = (¢ — b)) XP(—dH) + by

where ¢ = 0.052, d=0.0091 G~! [76]. The density of
the suspension was calculated from the formula p =
(1 - (I)sat)pg + (I)sathea where Pre = 7.88 g/cm3, pg =
1.261 g/cm® are the densities of iron and glycerin,
respectively. To estimate the specific magnetization,
the simple formula m = ¢, M,/p was used. Here, M, =
1714 G is the saturation magnetization of iron. With
the use of (50), the values of parameters 3, were deter-
mined, which proved to be two to three orders lower
than for the MNE Estimates show that in an MNE
the propagation rate of a slow magnetosonic wave is on
the order of ¢, =~ 100 m/s. It is possible that such a small
velocity of these waves is the very reason that slow
magnetosonic waves have still not been found experi-
mentally.
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