ISSN 1063-7710, Acoustical Physics, 2010, Vol. 56, No. 6, pp. 942—950. © Pleiades Publishing, Lid., 2010.

Analysis of Rotational Motion of Material Microstructure Particles
by Equations of the Cosserat Elasticity Theory

0. V. Sadovskaya and V. M. Sadovskii

Institute of Computational Modeling, Russian Academy of Sciences,
Siberian Branch, Krasnoyarsk, Akademgorodok 50, bld. 44, 660036 Russia
e-mail: sadov@icm.krasn.ru
Received March 1, 2010

Abstract— Oscillatory processes in media with microstructure under the action of concentrated impulse and
time-periodic perturbations are analyzed within the Cosserat elasticity theory. According to the results of
computations, such media are characterized by a resonance frequency equal to the frequency of natural oscil-
lations of particle rotational motion. This frequency is a phenomenological parameter of a material. It was
established that the oscillatory rotation of particles changes for monotone rotational motion with increasing

intensity of shear strains.
DOI: 10.1134/81063771010060199

INTRODUCTION

The mathematical model of the Cosserat contin-
uum [1-3], which takes into account rotational
degrees of freedom of microstructure particles of a
material, is used to describe the stressed-strained state
of composite, granular, powder, microfractured, and
micropolar media. Current studies on simulation of
nanoscale structures show that this model results from
a limit transition in discrete molecular-dynamic mod-
els with an unbounded increase in a number of parti-
cles [4—6]. Therefore, in the near future the model will
find wide application.

A fundamental difference between the Cosserat
medium model and the models of classical elasticity
theory is that the former includes two simultaneous
mechanisms of perturbation transmission. Along with
traditional longitudinal and transverse waves caused by
translational motion, there exist specific waves occur-
ring due to transmission of rotational motion in a con-
tinuum of particles (grains, blocks, or clusters) con-
nected with one another by compliant elastic bonds.
Rotational motion of particles explains, for instance,
some qualitative features of propagation of surface [7
and 8] and nonlinear [9] waves in the Cosserat
medium.

Analysis of the model equations shows [10] that
such a medium is characterized by eigenfrequency of
rotational motion determined only by elasticity of a
material and inertial properties of microstructure par-
ticles and independent of dimensions of a sample
under study and boundary conditions on its surface.
Therefore, using the methods of acoustic tomography
[11 and 12], reliable techniques for determination of
the phenomenological parameters of a model can be
developed. The same principle can apparently be used

to develop effective methods of resonance probing
materials with micro- and nanostructure. This study is
aimed at simulation of resonance methods of pertur-
bation of the Cosserat media that cause the acoustic
resonance at the eigenfrequency of particle rotational
motion.

ANALYSIS OF LINEAR THEORY EQUATIONS

Translational motion of particles in the Cosserat
elastic medium is characterized by velocity vector v
and independent rotations are described by angular
velocity vector . Along with asymmetric stress tensor G,
an asymmetric couple stress tensor m is introduced.
The complete system of equations comprises the
equations of motion, kinematic relations, and gener-
alized law of the linear elasticity theory:

pv=V-c+f, jo=V-m-2c"+g,

A = Vv+o, M = Vo,
c = M8:A)8+2uA" +2aA",

(1

m = B(&: M)s+2yM +2eM".

Here, p is the density of a medium; j is the moment of
inertia of particles in a unit volume; fand g are the vec-
tors of body forces and moments, respectively; A and
M are the strain and curvature tensors; & is the metric
tensor; and A, L, o, B, v, and & are the phenomenolog-
ical elasticity coefficients for an isotropic material.
The conventional notation and operations of the ten-
sor analysis are used: a colon denotes double convolu-
tion; a dot over a symbol, a time derivative; and an
asterisk, tensor transposition. Superscripts s and a
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denote the symmetric and asymmetric components of

the tensors:

ATz ATAR e A-A*

2 2

Where needed, the asymmetric component is identi-
fied with the corresponding vector. In particular, the
vector of tensor 6* appears in the equations of motion.

The linear scale of the microstructure of a material

is estimated using the formula r = ./5//(2p) based on
the model representation of a medium as close pack-
ing of an ensemble of spherical particles equal in
radius.

In the componentwise form, system (1) written in
velocities and stresses relative to the Cartesian coordi-
nate system is

pv; = Gi;1+ Gy 2+ 033+ ],
JO; = My + My o+ My 3+ Gy — G+ &,
a6+ ay( G+ Gy) = vy
byt + by(ritg + thy) = @, )
36+ ayGyy = Vi — O,
byt + by, = @,
4Gyt 436 = Vit Oy,
bymiry + bymny; = ;.

This form of the system is used for numerical imple-
mentation of the model. Here, the subscripts after a
comma denote partial derivatives of space variables.
For brevity, the following notations are used:

Lk l=1,23, i#k#l,
k=i+1mod3, [/=k+1mod3,
_ _htp A :

al - T > 02 - T >
w3 +2p) 2u(3h +21)

a3 = H—-HX; a, = ==L,

4pa 4pa
b, = B+y . b, = — B .
1 s 2 )
v(3B +27) 2y(3B + 2y)

b3 = 'Y_+8; = t\/

4ve 4ve

System (2) can be written in the matrix form [13
and 14]:

AU = B'U,+ BU,+B'U,+QU+G, 3)

where Uis the vector function comprising the compo-
nents of the velocity and angular velocity vectors and
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the stress and couple-stress tensors:
U = (vy, vy, V3, Gy, Oy, G33, Op3, O3, G315 O3, Oy,
Go1> Wy, gy W3, My, Moy, Mg, Moy, Mgy, My, M3, M5, M)

Matrix coefficients 4, B!, B?, and B> are symmetric, Q
is asymmetric, and G is the specified vector. Matrix A
is positive definite under the conditions

3421, >0, 3B+2yv,y, €>0,

that ensure positive potential energy of the elastic
strain. In this case, system (3) is hyperbolic in the
sense of Friedrichs. For hyperbolic systems, the
Cauchy problem and the boundary problems with the
dissipative boundary conditions are correct [15 and
16]. The characteristic properties of system (3) are
described by the equation

det(cA + nlB1 + n2B2 + n3B3) =
2,02 2

the positive roots of which are velocities of the longitu-
dinal waves (c,), transverse waves (c,), torsional waves

(c,,), and rotational waves (c,):
Cm = 'M{a Co = 'w
J J

In the one-dimensional case, when the sought
functions depend only on time and one of the space
variables x;, system (2) divides into four independent
subsystems describing the plane longitudinal waves,

A+21

“

pvi = Ci,is O = (A+20)vy 4,

. . ®)
Gy = 633 = Avy g,

the torsional waves,

J® = My 1+ Gy—0yp, 63 = Gy = 2000, 6)

myp = (B+2y)o,, and rityy, = 13 = Poy 1,

and the transverse (shear) waves with rotation of parti-
cles,

pvy = Cp, G = (L+)vy—200m;,

Gy = (L—a) vy + 200;, 7

JO3 = My 1+ G~ 0y,

My = (Y+€e)ws, iy = (y—€)os .

One more subsystem describing the transverse waves is
obtained from (7) by changing the indices.

The general solution of subsystem (5) is expressed
by d’Alembert’s formula, according to which the lon-
gitudinal waves propagate with velocities +c,, as in the
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Fig. 1. Characteristic spectral curves of the tangential stress for the Cosserat continuum (a) and a momentless viscoelastic

medium (b).

classical elasticity theory, and are not characterized by
dispersion.

Subsystem (6) of the torsional waves is reduced to
the telegraph equation relative to the angular velocity

. 2 . . . .
®, = ¢, ® 1} —4owm,/j. The corresponding dispersion

equation ¢ = nve,,/ /\/Tczvz —a/j, where c is the group
velocity and v is the cyclic frequency, determines a
particular solution in the form of a monochromatic
wave: ®, = Cexp(2miv(t — x,/c), where i is the imagi-
nary unit and Cis the complex constant. The telegraph
equation solution independent of x; and obtained
from here at ¢ — oo describes uniform self-oscillatory
rotation of particles of the medium upon homoge-

neous shear with the period 7= m./j/o . The general
solution of the telegraph equation is expressed as

g
1= [p'(8)/y(=2./(& = 8)n)d9
0

n
+ [7(9)/(-2/E(n - 8))d9
0

+(p(0) + q(0))Jo(-24/EN),

where &, = (£ x,/c,,)n/T, J,is the zero-order Bessel
function of the first kind, and p and q are the arbitrary
continuously differentiable functions that determine
the Goursat conditions for the characteristics of the
equation:

®(&,0) = p(&) +4¢(0),
®,(0,n) = p(0) +4g(n).

The analysis of the solution shows that wavelike rota-
tional motion of particles with the characteristic wave-
length of about ¢,, T is excited in the plane of the tor-
sional wave fronts [14].

The results of numerical investigation of Egs. (7) of
the transverse waves on the basis of the Neumann—
Richtmyer finite-difference scheme were reported in
[13]. The computations were performed for different
scales of the microstructure of a material in the one-
dimensional problem on impulse action on an elastic
medium of a periodic system of A-shaped impulses of
tangential stress. The results showed that, in each fixed
moment of time, the angular velocity and couple
stresses are oscillating functions with the characteristic
wavelength ¢,7. Consequently, the occurrence of the
oscillations, similar to the case of the torsional waves,
is related to the rotational oscillations of particles:
propagating along the medium, the transverse wave
initiates such motion at the front plane.

On the basis of Egs. (7), in the one-dimensional
case the ways of resonance excitation were simulated
by the expense of periodic boundary excitation with
the frequency of natural oscillations of rotational
motion of particles. Figure 1 depicts the tangential
stress spectral curves obtained by numerical solution
of the problem on uniform cyclic shear of a viscoelas-
tic layer of finite thickness. The graphs correspond to
the rigidly fixed bottom side of the layer. The solution
describes also the torsional oscillations of a cylindrical
sample with one edge rigidly fixed. In this case, the
tangential stress depends linearly on radius and,
hence, is proportional to ¢, and linear velocity is pro-
portional to v,. Figure 1a corresponds to the Cosserat
medium; Figure 1b depicts the same curve for an ordi-
nary momentless viscoelastic medium. The analogous
graphs for perfect nonviscous media have a system of
resonance peaks with infinite amplitudes. As it usually
is, viscosity was used for smoothing. The shear process
was described by Egs. (7) where, according to the
Boltzmann viscoelasticity theory, the products of the
medium parameters on the kinematic characteristics
of straining were replaced by the same characteristics
using convolutions of the relaxation nuclei corre-
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sponding to this parameters. The boundary conditions
of the problem were taken as

VQ|x]=0 = voexp(2mive), ;] =0,

x =0

=0

®)

V| 5

x,=h = 3 |xl =h
with the x, axis directed from the top down inward the
layer (4 is the layer thickness). The system was solved
by a spectral method: after the Fourier transformation,
the following system of amplitude equations was
obtained:

4V p v+ (L+ Q) vy — 2805, = 0, o)

4(nVYj— A) Dy + (7 + E)D3 1y + 20 vy, = 0.

The solution of this system was built in the explicit
form with regard for boundary conditions (8). The
amplitude of the tangential stress was determined as

Zniv&lz = (}’:l + &')‘,}2, 1— 2&6)3

The phenomenological parameters of a medium were
selected by the experimental data for heavy oil in a
rock at sufficiently low temperature where the mate-
rial is in the solid state [17]. For this material, p =
1114 kg/m3, j = 0.01 kg/m, p = 966, . = 52.2 MPa,
y+ €= 12.51 N, and 4 = 36.4 mm. According to the
Kelvin—Voigt theory used in the computations, the
complex modules are linear functions of frequency; in

particular, }:l = p + 2rnivp'. The imaginary parts were

chosen as to obtain the required smoothing of the
solution.

Comparison of the graphs in Fig. 1 shows that in
the Cosserat medium there is an additional resonance
frequency of 23 kHz close to the frequency of rota-
tional motion of particles and independent of layer
thickness. This is confirmed by a great number of
numerical experiments for different thicknesses. It
appeared that the change in 4 leads to natural dis-
placement of the periodic system of ground resonance
frequencies which are approximately v, = kc,/(2h),
where k =1, 2, ..., but the peak corresponding to the
frequency v, = 1/7T remains motionless.

The analogous computations for foamy polyure-
thane with the parameters p = 340 kg/m?, j = 4.4 x
10~*kg/m, A =416, u =104, o = 4.33 MPa, B =
—22.8,y=40, and € = 5.3 N [18] did not show a peak
so noticeable against the background of the funda-
mental frequencies at the material resonance fre-
quency of the same order of magnitude as that for
heavy oil. This fact is explained by the substantially
less pronounced couple properties expressed in the
values of parameters j and o. It appears that in the
materials with the low couple properties the resonance
of rotational motion of particles can be excited, for
example, by the periodic variation of the angular
momentum at the layer boundary. Spectral curves for
synthetic polyurethane are presented in Fig. 2. In
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Fig. 2. Resonance peak of the angular velocity amplitude
on the spectral curve for synthetic polyurethane.

this case, the parameters are p = 590 kg/m?3, j = 5.31 x
10~%kg/m, A = 2.195, p=1.033, . = 0.115 GPa, B =
—2.34, vy = 4.1, and € = 0.13 N. The results were
obtained by the numerical computation of system (9)
with the boundary conditions

Gl2|x1=0 =0, my| = myexp(2mivt),

x, =0

(10)

Valoop = O3] 2, = 0

x =h X =h

using the spectral-difference method.

The presented graphs correspond to 2 = 10 cm;
however, they are nearly independent of layer thick-
ness. The curves are related to different levels: the
upper one corresponds to the layer boundary where
the periodic perturbations are excited; the middle and
lower ones, to the levels distant by a quarter- and half-
thickness of the layer deep from the boundary. Analysis
shows that the amplitude of the angular velocity has
the only resonance peak at the frequency v, = 1.48 MHz

within the range of interest; the height of the peak is
determined by the imaginary part of the parameter

w} + ¢ and drops with depth almost linearly.

Qualitatively similar results in the problem with
boundary conditions (10) were given by the computa-
tions for the parameters of foamy polyurethane and
heavy oil.

RESULTS OF SPATIAL COMPUTATIONS

The problems of numerical implementation of the
Cosserat elastic medium in the geometrically linear
approximation using multiprocessor computers were
considered in [13 and 14]. The two-dimensional com-
putations of the natural oscillations of particle rota-
tional motion were presented in [13]. The results of
numerical solution of the spatial Lamb’s problem on
momentary action of concentrated forces and
moments at the half-space surface were reported in
[14]. The computations were based on the existing
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Fig. 3. Lamb’s problem for different types of loading: level surfaces of stress 611 under the normal loading (a), stress 61, under
the tangential loading (b), moment m;; under the action of the torsional moment (c), and moment m;, under the action of the

rotational moment (d).

software developed by the authors. In the seismograms
plotted using the results of computations in a SeisView
system of geophysical data processing, loading waves
of four types propagating with velocities (4) were iden-
tified: longitudinal, transverse, torsional, and rota-
tional. The spatial computations confirmed that the
main qualitative difference of the wave field in the
Cosserat elastic medium from the classical elasticity
theory is the occurrence of oscillations of particle
rotational motion at the wave fronts. Comparative
computations for different scales of the medium
microstructure established the direct proportional
dependence of the natural oscillation period on the
scale.

Figure 3 depicts the level surfaces of stress and
moments for Lamb’s problem on the action of con-

centrated loading at the angular point of the upper
boundary of the computation region. Loading of dif-
ferent types was considered. The level surfaces of
stress ¢1; under the normal loading &;; = —p;5(x)d(?)
are illustrated in Fig. 3a. The level surfaces of stress 6y,
under the tangential loading 6, = —p,0(x)d(¢) are shown
in Fig. 3b. The level surfaces of moment m,; under the
action of the torsional moment m,; = —g,6(x)d(¥) and
those of moment m, under the rotational moment
my; = —g,0(x)d(f) are presented in Figs. 3¢ and 3d,
respectively. Behind the fronts of the transverse waves,
one can clearly see the oscillations caused by rota-
tional motion of particles of the material. The compu-
tational region with regard of the symmetry conditions
is a quarter of half-space. In practice, the computa-
tions were performed on a cube with a side of 1 cm for
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(2)
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Fig. 4. Problem on the periodic action of the concentrated rotational moment: loading scheme (a) and the surfaces of the level of
angular velocity o, for the resonance (b) and nonresonance (c) frequencies in different moments of time (f = 6.5 and 13 ps on

top and at the bottom, respectively).

the case of synthetic polyurethane. The figures corre-
spond to the time moment 6.5 ps. To obtain acceptable
accuracy, 64 cluster processors were required.

Below, we present the results of numerical solution
of the problem on the action of the concentrated rota-
tional moment m, = —¢,0(x)sin(2nv?) periodically
changing in time. Figure 4 presents the loading
scheme for this problem (Fig. 4a) and the surfaces of
the level of angular velocity ®, for the nonresonance
frequency v = 1.5v, (Fig. 4b) and the resonance fre-

quency v = v, (Fig. 4¢) in different moments of time.

The computations showed that, at external action fre-
quency v, (Fig. 4c) equal to the eigenfrequency of

rotational motion of particles, the amplitude grows
with time and the oscillations smoothly damp upon
moving off the point of loading application; such
damping is characteristic of acoustic resonance. The
analogous computations showed that the variants of
specifying the time-periodic and spatially concen-
trated normal or tangential stress and the linear or
angular velocity do not lead to noticeable resonance
excitation of a medium.
ACOUSTICAL PHYSICS Vol. 56
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NONLINEAR VERSION OF THE MODEL

In the geometrically nonlinear case, translational
motion of a medium with the microstructure is
described by the equation x = x(&, f) relating the
Lagrangian and Euler vectors of the centers of mass of
particles. To take into account rotational motion, the
orthogonal tensor R= R(§, 1) is introduced. The veloc-

ity vector is v = x and the angular velocity tensor is

calculated as ® = R - R*. As a measure of strain, the
tensor A = Vex - Ris taken, which possesses the prop-
erty that, upon motion of the medium as a rigid whole
when the strain gradient tensor (V. x)* coincides with
rotation tensor R, the former equals to the metric ten-
sor, which corresponds to the strainless state of the
material. In addition, the equation
A-R* =V;v+Vex o (11)
is valid, the linear approximation of which exactly cor-
responds to the kinematic equation for the tensor of
strain velocities in the geometrically linear Cosserat
model. Let (Vx)* = R, - Vis the polar decomposition
of the strain gradient tensor in the product of orthogo-
nal R, and symmetric V tensors. The construction of
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the tensor A = V- R, takes into account both the nor-
mal medium strain described by the symmetric part of
this decomposition and the relative particle rotation

characterized by the tensor R, = R - R, while the ten-

sor of particle rotation R = R, - R, is presented as

superposition of the relative and translational rota-
tions.

From the integral laws of conservation of momen-
tum, angular momentum, and energy with regard of
the laws of reversible thermodynamics, the system of
differential equations of motion and the defining
equations follows:

pov = Ve-o+/,

0 a
&(J-(o) =V, -m+2(c* Vx) +g, (12)
o0 00

oN’ oM

Here, p, is the initial density of a medium, J is the
symmetric and positively defined tensor of inertia, and
@ is the internal energy per unit volume, i.e., the elas-
tic stress potential depending on tensors A, M, and
entropy S. For the adiabatic processes, the entropy is
constant and enters system (12) as a parameter. In the
nonlinear version of the model, the stress tensors are
related to the initial configuration and curvature ten-

c-R=

sor M is governed by the equation M = V:», which
includes the Lagrangian variable gradient.

Tensor of inertia J changes depending on time in
accordance to the equation J = R - J° - R*, which can
be explained by the transition to the accompanying
coordinate system associated with a rotating particle.
After time differentiation, it yields the differential

equation J=0-J-J o System (11), (12) differs
from the system of equations for the model of a
micropolar medium [19] only in some details.

In the case of an isotropic medium, the tensor of
inertia is spherical, J° = /3, and the internal energy
depends only on the invariants of tensors A and M. As
a complete system of independent invariants, three
invariants from the symmetric part and one invariant
from the antisymmetric part of each of the tensors can
be taken:

E=A:8, L=(A):5

L= (A 18

B=M:5, I =(M):s,
= (M) 15 = 2|m.

The simultaneous invariants cannot participate as
arguments, since A is related to the polar tensors and

SADOVSKAYA, SADOVSKII

M is related to the axial tensors. At such selection, the
defining equations take the form

G- R = a5+ 2a,A° +3ay(A’) +20A°, 13
m = b5+ 2b,M +3by(M) + 26 M",

where a; = 0®/01,, b, = 6®/0J, (k=1, 2, 3), and

o= 0®/01, and & = 0®/0.J; are the state functions. In

the theory of small strains of the Cosserat continuum,
the elastic potential is determined as

® = Mgl) +uly+al;
—(BA+2W) + B 1) +yJy+els.
Here, a; = M1} —3) =21, ¢y =1, a3 = =BJ1,

by=v,and h; = 0.

As an example, consider the process of planar shear
of an isotropic Cosserat elastic medium in the absence
of body forces and moments described by the equa-
tions

X1 =&, X, =35 +8&, x5 =&, (14)
If shear velocity y is constant, the homogeneous
stressed-strained state occurs in the medium, since
forces of inertia of translational motion are absent.
The matrices of the strain gradient tensor, rotation
tensors, and angular velocity in the coordinate system
under consideration are

100 cos@ —sing 0
(Vex)*® = v 10| R = sing cosg 0 |
001 0 0 1

0-10

®=9 100

000

The curvature and couple stress tensors are identically
zero. In the absence of relative rotation of particles,
when angle ¢ coincides with the angle of rotation of
translational motion @,, the matrix

ysing + cos@ ycose —sing 0

A=V R= sin@ cos@ 0
0 0 1
ACOUSTICAL PHYSICS Wl. 56 No. 6 2010
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is symmetric; consequently, we have tang, = y/2. In

this case, according to (13), the matrix
G* . V&X

s s 2 a (15)

= (R(a;d+2a,A" +3a;(N) —2aA7) - A- R¥)

is also symmetric; therefore, the equation of rotational

motion, which involves only its antisymmetric part,

takes the form j$, = 0. It is obviously valid only if the

medium does not possesses the rotational inertia. In
the inertial media, the condition ¢ = ¢, + @, is satis-
fied, where ¢, is the angle of relative rotation consid-
ered to be small as compared to ¢,. Under this condi-
tion, accurate to the second-order terms, we have

sing = sin@, + ¢,cosQ,,

cosQ ~ cosP, — P,singQ,,

. 2—y 0 x 20
X +4R=| y 2 0 —® 250 |
0 0 Ny +4 000
i 42y 0 420
L +AAR Y 2 0 L I I |
0 04y +4 0 0 0

Substitution of these approximations to formula (15)
with the subsequent calculation of the antisymmetric
part of the matrix 6* - Vx yields the equation of rota-
tional motion

43’
o +4)
where a, = (00 — a,))(x? + 4) — (a; + 3a5(3* +

2)/2) N xz + 4. The second term in the right part of
Eq. (16) associated with the shear velocity describes
continuous rotation of particles. This term is exactly
equal to the moment of forces of inertia of transla-
tional motion. The first term is caused by elastic com-
pliance of a medium with respect to rotational motion
of particles. At the positive value of parameter a,
dependent of shear angle, an oscillation mode of rota-
tion is implemented in the medium. At the negative
value, the oscillations vanish.

Consider the case of the quadratic stress potential
of the Cosserat continuum. As upon shear we have

I =1+ A/XZ + 4, for this potential we have

](pr = _aO(pr+ ) (16)

ay = M +4-200+1), ay=p, a5 =0,
ay = (—A— )" +4)+ 200 + Wy + 4.
ACOUSTICAL PHYSICS Wl 56
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Atsmall y, parameter q, is 4o > 0. The general solution
of Eq. (16)
. 2mt 2wt
1) = C;sin=—— + C,cos=—
@1 1 T 2 T

describes in this case the periodic natural oscillations
with period 7.

For most materials with the moment properties
reported in literature, the quantity A + L is higher than
o by an order of magnitude. Therefore, parameter a,
positive at sufficiently small shears changes its sign.
This occurs at the critical y value

_ 242a(k+;0——a{

A+u—o

Xk

Upon approaching this value, the oscillatory mode of
rotation of particles changes to smooth oscillationless
motion. For example, the respective critical values for
foamy and synthetic polyurethane are ¥, = 0.26 and

% = 0.55.

The obtained solution illustrates the main qualita-
tive feature of stain of a medium with the microstruc-
ture as compared to an ordinary elastic medium. At
the certain conditions, the shear process in such a
medium is accompanied by normal oscillations of
rotational motion of particles, which leads to the
occurrence of acoustic resonance under certain per-
turbation conditions.
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