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A b s t r a c t —A  two-dimensional model of the anisotropic nanocrystalline (granular) medium being a rectan­
gular lattice of elastically interacting elliptical particles with translational and rotational degrees of freedom 
was considered. In the long-wave approximation a system of linear equations in partial derivatives describing 
the propagation of the longitudinal, transverse, and rotational waves in such a system was obtained. The 
dependences of the wave velocities on the grain size and form were analyzed. It was shown how to determine 
the moduli of elasticity of the granular material from the change of the velocities of the acoustic waves prop­
agating along different crystallographic directions.
D O I :  10.1134/S1063771010060175

I N T R O D U C T I O N
A t present there is a gap between the level of the 

development of technologies for the fabrication of 
materials with micro- and nanostructures and the pos­
sibility of their theoretical description and forecasting 
their properties. In general, a “ microstructure” of a 
medium means that a medium has several scales 
(structural levels), their self-consistent interaction and 
the possibility of the energy transfer from one level to 
the other. The real values of the medium “ micros­
cales” can vary in the region of both micrometers and 
nanometers or angstroms. From  the point of view of 
the methodology of a theoretical investigation, of 
importance are not their absolute values, but rather the 
smallness of one scale with respect to the other. It is 
another story that, when studying real physical, chem­
ical, or biological systems, the effects of the “ micro­
structure” are manifested most vividly at the region of 
nanometers and below. A t  the nanoscale level the clas­
sical ideas starts to contradict the actual nature of the 
physical properties of matter and it is necessary to take 
into account their quantum-mechanical essence. 
However, the theoretical estimates show that one can 
use the classical ideas and analogies in order to study 
acoustic vibrations of the crystalline structures at the 
nanoscale level [1, 2].

Media with a complicated structure are studied 
insufficiently (in particular, this refers to the elabora­
tion of the dependences between the parameters of the 
medium microstructure and its macroproperties). 
This hampers the development of diagnostics of prom­
ising materials the properties of which are determined 
by their micro- and nanoscale structure. It is appropri­
ate to perform such studies with the help of acoustic 
waves which, in contrast to the electromagnetic waves

and X-ray radiation, can propagate in the medium 
bulk, which the latter do not penetrate. Acoustic waves 
are internal vibrations of the material, and they yield 
information about its geometric structure and physical 
properties, but in encoded form. One has to be able to 
decode this information.

The first experiments on acoustics of the solid state 
with a microstructure were performed in 1970 by 
G .N .  Savin et al. [3, 4]. The authors established the 
correlation between the grain size in different metals 
and aluminum alloys and the dispersion of the acous­
tic wave. Dispersion of the ultrasound waves was also 
observed in an artificial composite— ferrite pellets in 
epoxy resin [5].

It should be noted that, in media with a micro­
structure, there are several types of waves— the so- 
called acoustic and optical phonons and pumping of 
energy from one type of waves to the other is possible
[6] . It is necessary to take this into account when per­
forming both theoretical and experimental studies. In
[7] it was shown that the presence of microrotations in 
crystals leads to the appearance of the spatial disper­
sion and new wave modes. Chapter 4 in [8] deals with 
the analysis of spin and acoustic waves in ferromag- 
nets. Elastic waves are considered in the classical the­
ory without taking into account microrotations, but it 
is shown that, due to the relatedness of the elastic 
deformations with the magnetic field of spins, the 
stress tensor is no longer symmetric, i.e., in an elastic 
ferromagnet there appear couple stresses at the excita­
tion of the spin waves. Analysis of the dispersion prop­
erties showed that the acoustic wave with the “left- 
hand” circular polarization interacts with the spin 
wave much more strongly than the acoustic wave with 
the “ right-hand” polarization.
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In the last twenty years, the processes of propaga­
tion and interaction of acoustic waves in media with 
microstructure have been extensively studied theoreti­
cally and experimentally (see, e.g., [9—13]). However, 
the main attention is paid to the analysis of the propa­
gation of the longitudinal and shift waves, and the 
propagation of rotational waves (waves of microrota­
tions) is studied less. Note [14, 15] on studying the 
nonlinear interactions of the longitudinal waves and 
waves of microrotations as applied to the problems of 
seismic acoustics and [16—20] in which the processes 
of the propagation and interaction of the longitudinal, 
transverse and rotational waves in crystalline media 
were studied.

In this work it is proposed to use the acoustic 
method for the determination of the elastic properties 
of the anisotropic nanocrystalline (granular) material 
with the nondense packing of particles based on mea­
suring the velocities of elastic waves propagating along 
different crystallographic directions [21]. Such mate­
rial is simulated by a rectangular lattice of rigid ellip­
soid particles (an idealization is used in which material 
grains are considered ellipsoids [22]). Each particle of 
this lattice has two translational and one rotational 
degree of freedom. Such a model is a synthesis of a 
chain of rectangular particles and a square lattice of 
round particles considered in [18] and [23]. The space 
between particles is a non-mass medium that transfers 
the force and momentum impacts. The work is mainly 
aimed at obtaining equations of motion and elabora­
tion of the interrelations between the physical- 
mechanical properties of the granular material and 
parameters of its microstructure. To achieve these 
aims we use the method of structural simulation [24]. 
The structural models contain parameters character­
izing the geometry of the material (lattice period, 
particle size and form) and therefore they are the 
most appropriate ones for studying the influence of

Fig. 2. Scheme of force interactions between anisotropic 
particles and kinematics.

the dimension effects on the macroproperties o f the 
material.

D I S C R E T E  M O D E L
We consider a two-dimensional rectangular lattice 

consisting of homogeneous particles (grains or gran­
ules) with mass M  having the form of an ellipse with 
axes lengths d 1 and d 2 as a model of medium with non­
dense packing of particles. In the initial state, they are 
concentrated in the lattice sites and the distance 
between the centers of gravity of the neighboring gran­
ules along the x  axis is a and along the axis y  is b 
(Fig. 1 ). When moving in the plane, each particle has 
three degrees of freedom: the displacement of the cen­
ter of gravity of the particle with the number N  =  N (i, j )  
along the axes x  and y  (translational degrees of free­
dom Mi, j  and wi, j) and the rotation with respect to the 
center of gravity (rotational degree of freedom ф;-, j) 
(Fig. 2). The kinetic energy of the particle N \j  is 
described by the formula

2 2where J  =  M ( d x + d2 )/16 is the inertia of the particle 
with respect to the axis passing through the center of 
gravity.

It is considered that the particle N  interacts only 
with the eight nearest neighbors in the lattice. The 
centers of gravity of the four of them are located at the 
distance a along the axis x  and b along the axis y  from 
the particle N  (these are particles of the first coordina­
tion sphere). The centers of gravity of the other four 
are in the diagonals of the rectangular lattice (these are 
particles of the second coordination sphere) (Fig. 2).
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The central and non-central interactions of the neigh­
boring granules are simulated by elastic springs of four 
types [23]: central (with rigidity K0), noncentral (with 
rigidity K 1), “ diagonal” (K2), and also springs con­
necting the central particle with the grains of the sec­
ond coordination sphere (K3). The interactions at ten­
sion-compression of the material are simulated by the 
central and noncentral springs. The momenta at the 
rotations o f particles are transferred through springs of 
the K 1 type. Springs with the rigidity K 2 characterize 
the force interactions of particles at the shift deforma­
tions in the material. The points of junctions of the 
springs with particles are in the apexes of the rectangle 
of the maximum area inscribed in the ellipse (Fig. 2).
Each rectangle has the size h 1 x h2, where h 1 =  d3/V 2  ,
h 2 =  d2/ V 2  .

It is assumed that the displacements of the grains 
are small in comparison with the dimensions of the 
elementary cell of the considered lattice. The interac­
tion of particles at the displacements from the equilib­
rium is determined by the relative elongations of the 
springs (Fig. 2). The potential energy due to the inter­
action of the particle N  with eight nearest neighbors in 
the lattice is described by the formula

„EC, AB
D 1( i,j - 1) Awj ± |  Афу- -  DCE, BA 

1( ij  + 1),

DC^Bn = - ( ( a -  h ) A щ ± h2Awt ± ah2Ф ;) -  ) ) ,

D A(CE-B1) = ! ( ( b -  h 2) A Wj ± h,AUj + b h 1 Фу) -  D ) j ) ,

DE B - 1,j - 1) = 1  ((a -  h )(Ui - 1,j - 1 + Ui , j ) (2)
r 3

+ ( b -  h 2 )(A  wt + A Wj) + (bh1 -  ah2 ) ( ф ,- -1, j - 1 + Ф,; j)),

dbe -  DebD 3( i  + 1 , j  + 1) D 3( i  - 1 , j  - 1),

2

D B  + 1, j  - 1) = -  (( a -  h 1 )(A  Ui  -  A Uj )
r3

+ (b -  h 2)(A  Wj  -  Aw i ) + ( ah 2 -  b h 1 ) ( Ф,- + 1, j  - 1 + Ф;', j ) ) >

d C A - 1 ,j  + 1 ) = -  ((a -  h 1 ) ( A Uj  -  A Ui ) 
r3

+ (b -  h 2) ( A Wi  -  A Wj ) + (ah 2 -  b h 1 ) ( Ф,-- 1,j  +  1 + Ф;',j ) ) .

v n = 1  ( i  K  + i  K  d 2 ,

n = 1 n = 1

г = 1
+ 1 K  D2n  + i  K  D 3 n

4  „  Л

)=1

8
(1)

where Dln (l =  0, 1, 2, 3) are the elongations of the 
springs of the four types numbered in the arbitrary 
order connecting the particle with its neighbors. The 
elongations of the central springs are determined by 
the changes o f the distances between the geometrical 
centers of the rectangles ABCE inscribed in the ellipses 
(Fig. 2), and the tensions of other springs are charac­
terized by the variations of the distances between the 
apexes of these rectangles. Expression (1) contains an 
additional factor 1 /2 , since the potential energy of 
each spring is equally divided between two particles 
connected by this spring.

We denote AUi =  u;-, j  — Ui _ j, j  and AUj =  u;-, j  — u;-, j _ b 
then AUi + j =  Ui + j,j — u ;-,j and AUj + x =  u ;-,j + x — u ;-,j. 
The expressions for the elongations o f the springs 
calculated in the approximation o f smallness o f the 
quantities AUi ~ Aw;- ~ as, AUj ~ Awy- ~ bs and Ф;- =
(Ф(--  i ,j + Фг,j ) / 2  ^  я/ 2  have the form

D 0(i-  1 ,j) = AUi -  D 0(i + 1 ,j),

D 0(i,j-  1) = Awj -  D0(i,j + 1),
CB, EA 

D 1 (i - 1,j) A Ut ± h-2 Aфi -  DBC, AE 
1( i + 1j j ,

Here ri =  7 (a -  h x) 2 + h 2, r2 =  J (b  -  h 2 )2 + h j , r3 =

J (a  -  h x)2 + ( b -  h 2) 2 are the distances at the initial 
time moment between the neighboring particles, 
respectively, along the x-axis, y-axis, and along the 
diagonal (Fig. 2). In (2), the notations of the elonga­
tions of all springs except for the central ones consist 
of three components. The first subscript corresponds 
to the rigidity of this spring (0, 1, 2 or 3). The second 
subscript is in parentheses and indicates the number of 
the particle, which the given spring connects with the 
central particle N , j- The third (super)script stands for 
the apexes of the rectangles connected by the given 
spring. The apex of the central rectangle is given first. 
In formulas (2) there are ± and + signs; therefore, the 
third index consists of two parts: first, the apexes of the 
rectangles connected by the first spring (the upper 
signs of the ± and + symbols are taken for the elonga­
tions of such springs) are indicated and after the 
comma those of the second spring (in this case the bot­
tom signs of such symbols are taken). Tensions of 
springs denoted by the equivalence signs are obtained 
by the substitution of indices i by i + 1  and j  by j  + 1 . 
The notations of the tensions of the central springs 
consist of only the two mentioned above subscripts. It 
should be also noted that tensions of the springs of the 
second coordination sphere in this approximation 
depend on the rotations of particles, but this depen­
dence disappears when the condition of the similarity 
between the form of the particles and the lattice form 
holds, when b/a  =  h2/h3. This condition will be dis­
cussed in detail below.
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With the help of relationships (2), in which only 
linear terms for the elongations of springs are taken 
into account, the following expression for the poten­
tial energy per particle with the number N  =  N \j  is 
deduced with accuracy to the terms on the order of s2 
inclusive (the analogous expression with the accuracy 
to the terms on the order of s3 inclusive was obtained 
in [25]):

U  j = (B ,{A u t ) 2 + B 1 (Awj)2)

+ (B 2 (A  Uj) 2 + B2 (A  w;.)2)

+ R 1 (B 3 ( А Ф, ) 2 + B3 (Афу )2) (3)

+ ( B 4A  u;A  Wj + B4A Uj Awj)

+ ( B 5 Awiф i -  B 5A uj Ф/) + В бФ j

In (3) terms with the coefficients B 1, B\ and B 2, B 2 

describe the energy of the longitudinal and shift defor­
mations, terms with the coefficients B 3, B 3, and B 6 

describe the energy related to the noncentral 
(moment) interactions of the particles, and the terms 
in the two last parentheses describe the coupling energy 
of the transverse displacements with the longitudinal 
displacements and rotations of the particles, respec­
tively. Here, R  =  J . f /  M  =  J d l+ d 2  /4 is the radius of 
inertia of the microparticles of the medium with respect
to the center of gravity (obviously, R  =  d/V8 for the 
round particles with the diameter d  =  d 1 =  d2). The 
coefficients of expression (3) are explicitly expressed 
through the parameters of the micromodel and con­
stants of the force interaction between particles:

B 1

2 (a_2K 0 + 2K 1 +
V

fcAf +2 2
2 (a -  hj) 2

2
Г3

\
K 3 ,

У

B1 =
2(

K 0 + 2 K 1 + 2(b — -и) 2 K , ^(b -h -2^2 K  ̂
------ 2----- K 2 + ------ 2----- Kr2 Г3 y

2 2

B 2 = a h -  k  +  ^Ъ- — И  k
V r 1

2

B 2 = b hi K  + ( a - h i)
2 Л 2 2V r2 r3

2 У
K

B 3
2 (  2 , 2

£ -  - 2Ki + ^ K 2 +
4 R 2 V r1

(ah2 -  b h 1)
2

r3

\
K 3 , 

У

B3 = ' 2 (  ^  , b2h1 ^ , ( a h 2 -  bhi)
4 R 2

hi Ki + — i K 2 + K 3 (4)

B 4 = 2 a2(a -  h i ) (Ъ -  h 2)
2r3

K 3

B 4 = 2  ̂ (a - ' . . )( ' i - h2) K 3,
r23

B 5 = 2a ( ^ :  K  + ( b -  h 2) ( a h 2 -  bhi ) K ^
2 K2  2 3V r.

b ;  = 2  ь( f l h K  + ( a -  h i) ( ah2 -  bhi )K

V r2
2r3 У

B 6 =
2 2 2 2 

a h 2 Ъ h i
2 + 2 V ri r2 y

K  + ( a h 2 -  b h i) K
3

From  the Lagrange equations of the second kind, one 
can obtain differential - difference equations describ - 
ing the dynamics ofthe rectangularlattice ofanisotro - 
pic particles. However, for the correlation of this 
model with the known solid - state theories, it is appro - 
priate to consider the continuum approximation.

C O N T I N U U M  A P P R O X I M A T I O N
In the case of the long -wave perturbations, when 

X >  a, where X is the characteristic spatial deforma - 
tion scale, one can transfer from the discrete variables 
i and j  to the continuous spatial variables x  =  ia and 
y  =  ja .  The functions given in the discrete points are 
interpolated by the continuous functions and their 
partial derivatives:

ui+h j +12 ( 0  = u (x  + 11 a  y  + 12a  t)

= u (x, y, t) + a V l id -  + i j ^ -  y dx dy '

a2( , 2d2u , dudu ,2d2u
+ т-I l i 2 + ^ l i l2~~  + l

2 V dx2 2dx dy ' '2Qy

a ( , 3d u о d i d udu 
+ T l  l i 2 + ^ l i l2 2T"

dx d x2 dy

(5)

o , ,2d ud2u ,3 d 3 u 
+ 3 li l27-----2 + l2— 2

d x  d y 2 dy'
+

where lx =  0 , ± i and l2 =  0 , ± i are the shifts of the num­
bers along the axes x  and y  of eight particles interacting 
with the central one. Then, if in expansions (5) we 
limit ourselves to taking into account only the terms 
on the order of O(a), then the two-dimensional den-

ACOUSTICAL PHYSICS Vol. 56 No. 6 20i0



928 PAVLOV

sity of the Lagrange function L  of the medium com­
posed of the anisotropic particles has the form

т Р/ 2 2 n2 2 ,
L  = 2 (Ut + Wt + R  Ф()

Р 2 2 2 2 2 2-  % [c1 ( Ux + 8 1Wy) + c2(Wx + § 2 Uy)
2  У '  (6 )

+ R 2c23 (Ф2 + 83 Ф2) + s2( UxWy + 64 uywx)

+ 2  P1 (Wx -  65Uy) Ф + 2 p2Ф2 ] .
With the help of the Hamilton—Ostrogradsky vari­

ational principle, a system of the first-approximation 
differential equations describing the dynamic pro­
cesses in the anisotropic crystalline medium is 
deduced from Lagrangian (6 ):

Utt
2

Ci Uxx + 6 2c 2 uyy +
I + 84

2 s' Wx y 8 1 Р 1 ФУ ,

Wtt
2

C2 Wxx + 8 1C1 Wy y  +
I + 8 4

2
S2Ux y Pi Фx (7)

Pi- 2 P2Ф« = C3(фxx + 8 зфуу) + — ( 85Uy -  Wx) ----- - Ф
R R

Here, the following notations are introduced: c, =
J l R / p a b  (i =  1, 2, 3) are the propagation velocities, 
respectively, of the longitudinal, shift waves and waves 
of microrotations, s =  J 2 B 4/p a b  is the coefficient of 
the linear coupling between the longitudinal and shift 
deformations in the material, p1 =  B 5/p a b  and p2 = 
B 6/pab are the dispersion parameters, p =  M /a b  is the 
average value of the density of the studied two-dimen­
sional medium, 8 i ( i =  1—5) are the correction coeffi­
cients appearing due to the anisotropy of the studied 
medium:

the crystalline lattice by 90° and, therefore, they are a 
mathematical model of a strongly anisotropic medium 
[26]. I f  all anisotropy parameters 8 ,- are unity, then sys­
tem (7) with accuracy to coefficients coincides with 
the equations for the hexagonal lattice of round parti­
cles deduced earlier [19, 27].

D E P E N D E N C E  O F  T H E  A N I S O T R O P Y  
O N  T H E  M I C R O S T R U C T U R E

The structural simulation used in the work allows 
one to establish the interrelation between the micro­
structure and the macroproperties of the medium. In 
mechanics, this refers, first of all, to the dependence of 
the anisotropy and moduli of macroelasticity of the 
medium on its geometrical structure. These problems 
remain open in the phenomenological theories.

It is seen from expressions (8) that the dependences 
of the anisotropy parameters 8 , on the microstructure 
parameters are rather complicated, since they contain 
four force constants (K0, K b K 2, K3) and four geomet­
rical parameters (a, b, h 1 and h2). To simplify these 
expressions, we decrease the number of the geometri­
cal parameters twice by assuming that the condition of 
similarity of the form of the particles to the lattice form 
holds

d- _  b 
d 1 a

(9)

and introducing two new dimensionless quantities: 
f  =  b/a  =  h2/h1 is the similarity coefficient (or form

parameter) andp  =  d j a  =  h^ / 2  /a  =  h2V 2  /b =  d2/b is 
the relative particle size. Then we consider the analysis 
of the dependence 8 (- on these two quantities in more 
detail. With these assumptions equalities (8) take the 
form

81 _ ^ r l rlrljKp + 2KQ + 2 (b  -  h2)2(r\K2 + r ^ )  

a2r2rf r\(Ko + 2 K ) + 2 (a -  h 1 )2(r]K2  + r K )

82 _
2 2 2 2 2 2 b r1 h  Гз K 2 + (a -  h 1) r2 K 3

a2r2h2r K  + (b -  h 2)2r2K 3
2 2

83 _
2 2 2 2 2 2 2 2 2 2b r1 h xr2ГзK 1 + b h 1 ГзK  + (ah 2 -  b h 1) Г2K 3

2 2 2 2 2 2 2 2 2 2a r2h 2Г1Г3K 1 + a h 2Г3Л 2 + (ah 2 -  b h 1) Г1Л 3
(8)

b
8 4 _ - - ,

85 _
brlbhlrlK2 (-г — ^ 1)(<a^2 -  bh1)r--K3
ar2ah2rK + (b -  h2) ( ah2 -  b h ) r^K3

In the case when 8 ;- ^ 1  at least at one i, Eqs. (7) 
become noninvariant with respect to the rotation of

2

a

2 2
8 f  r1 81 _ —

2

x rl jKp + 2 K 1 ) + f 2 ( M - p ) 2a 2( K2 + - А / г З Ю , 

A  Ko + 2 K 1) + U/2 -  p  ) 2 a2( K 2 + ( r \ /r \) K 3) ’

8 2
p  (r2 /r2 ) K 2 + ( 72  -  p ) 2K 3

p 2(r2/r2)K 2 + ^ / 2  - p )2K 3

K 1 + ( f  a 2l r \) K 2

K 1 + (a2/r!)K 2 ’

84 = f 2 85 d  _  ( 7 2  -  p ) 2 + f 2 p 2 
r2 /  ( M  -  p )2 + p2
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Here,

r j a  =  лД - Рл/2  + p 2(f 2 + 1 ) / 2  , 
r2/a  =  7 f 2( 1  - p V 2 ) + p2( f 2 + 1 ) / 2  ,

r3/a =  V (f 2 + 1  ) ( T 2  - p )2/ 2  .

Note that a t f  =  1 r1/a =  r2/a =  *jl -  p J 2  + p 2, r3/a =
72  — p  and, consequently, all 5, =  1 and, in addition, 
P1 =  P2 (see. (11)). In other words, Eqs. (7) degenerate 
into the analogous equations for the medium with 
dense packing of particles [27], which, in turn, coin­
cide with the equations of the Cosser two-dimensional 
continuum consisting of the central-symmetric parti­
cles [28]. A  more detailed analysis of the dependence 
of the anisotropy parameters 5, on the relative size of 
articlesp  and the form parameterf  is given in [29].

E F F E C T  O F  T H E  M I C R O S T R U C T U R E
O N  T H E  A C O U S T I C  C H A R A C T E R IS T IC S  

O F  T H E  M E D I U M
In two previous sections, the interrelation between 

the microstructure of the anisotropic medium with 
nondense packing and its macroparameters was estab­
lished on the basis of structural simulation. N o w  we 
analyze the dependence of the acoustic characteristics 
of medium on the particle form and also on the parti­
cle size and parameters of the interparticle interaction 
with the help of this interrelation.

It follows from (4) that the coefficients of Eqs. (7) 
are expressed via the force constants K 0, K 1, K2, K3, 
lattice parameters a and b and particle sizes h 1 and h 2 

as follows:

P 1 = 2 a

M

2 f h2

V(a -  h 1) + h2
-  К

+ ( b ^ X a / h - b h ^  K  

a ( ( a -  / ) 2 + (b -  h 2)2) J

p2 = 1
M2 M

( ( 22 a h2
+

2 2  
b h 1

V(a -  h 1 )2 + h2 (b -  h2)2 + h\)
K 2

+
( ah2 -  bhq)2 

(a -  h 1 )2 + (b -  h 2)2

\
K 3 .

J

It is seen from relations (10) that, in the nanocrystal­
line (granular) media, the velocity of the wave propa­
gation depends on four force constants K 0, K 1, K 2, K 3 
and four geometric parameters: a, b, h 1 and h2. To sim­
plify the analysis of such dependence, we assume as 
above that the condition of similarity of the form of the 
particles to lattice form (9) holds and substitute four 
geometric parameters by two dimensionless quanti­
ties: form parameter f  and relative particle size p. 
In this case expressions (10) take the form

2C
2fa_

M
K 0 + 2 K 1 +

V
—2 ( ^  p)—  K 2 +
( 7 2  -  p  )2 + f  у

2

1  + f 2

\
K 3 ,

J

2
c 2

2 a
M

2 f  л  2
f p

V(72 -  p ) 2 + f  2p2
K 2 +

1  + f 2
- K 3

2f2 a c 1 _  — 
1 M

K 0 + 2  K 1 + К,
V ( a -  h 1 ) 2 + h2

\
+ 2 (a -  h 1)

^  K 3
(a -  h 1 )2 + (b -  h 2)2

2 _ 2 a_ 
C2 _ M

2f h 2

V(a -  h 1 )2 + h2 (a -  h 1 )2 + (b -  h 2)2 J
- K 2 + ( b -  h 2)2

K 3

2 f2 ac3 _ -------:
2  M R

/ 2k  +
V (a -  h 1 ) 2 + h

2 2
a h 2 -K 22 2

( ah 2 - b h 1) к

( a -  h 1 ) 2 + (b -  h 2)2 J

2 _  4a2 (a -  h 1) ( b -  h 2)5 _ K
M  (a - / 1 )2 + (b -  h 2)2

(10)

c2 _ ^̂ -2.f 2 f K  + -2 к
M ( 1  + f 2 ) V (7 2  -  p )2 + f 2p 2

K

2 4a2 f
C __ _______________ J___ K 3

M  1 + f 2 3’

(11)

P 1 _ 1 M

2f 2 2f p
K 2

V(72 -  p ) + f  p 2 J

2

P 2 _  ^2 M

2 2f p 2 2
+

2f p
K

VV(72 - p )2 + f p 2 f 2(7 2  - p )2+ pV

It follows from (11) that c2 =  p1 + f s 2/2 .  This means
2that c2 ^ P1 and the equality is achieved only in two 

cases: when f  =  0 (particles are rods elongated along 
the x-axis) or K 3 =  0 (one-dimensional model). If  the 
particles are round, then p1 =  p2 =  p and, independent
of the lattice type, 7  =  p + s2/2  [19].
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Fig. 3. Dependence of the velocities of the longitudinal (q), transverse (c2), and rotational waves (C3) on the relative particle sizep 
at Kx/K0 = 0.1, K1/K0 = 0.2, K2/K0 = 0.65, and the form parameter f  = 0.5 (a), 1 (b), and 2 (c).

Fig. 4. Dependence of the velocities longitudinal (c1), transverse (c2), and rotational waves (C3) on the form parameter f  at 
K 1/K0 = 0.1, K2/K0 = 0.3, K3/K0 = 0.3 and the relative particle size p = 0.5 (a) and 0.9 (b).

The analysis of relations (10) and (11) shows that if 
the square lattice (a =  b) made of round particles f  = 1 ) 
the velocity of the rotational wave c3 and dispersion 
parameter p does not depend on K 3, the parameter of 
the force interaction with the second coordination 
sphere, then when the condition of similarity of the 
form of the particles to lattice form (9) does not hold, 
such a dependence appears for c3, pj and p2. O n  the 
other hand, this analysis implies that this dependence 
is absent not only in the case of the square lattice of 
round particles, but also for the rectangular lattice of 
elliptical particles under the similarity condition b/a  = 
d2/ d x, although in this case р1 ф p2 still. Consequently, 
in the linear equations of dynamics for the rectangular 
lattice, in addition to the radius of the particle inertia 
R , “ equalizing” the dimensionality of the translational 
shifts and rotations, there are six independent con­
stants (c1, c2, c3, s, p1, p2) even if similarity condition (9) 
holds; for the square lattice of round particles— there 
are five (c1, c2, c3, s, p); and for the hexagonal lattice of 
the same particles which is isotropic in the acoustic

properties in the long-wave approximation, there are 
four (c1 , c2, c3, p) [19].

Figure 3 shows the dependences of the values of the 
velocities of the longitudinal (c1), transverse (c2) and 
rotational waves (c3) on the particle size normalized to
c0 =  a J K q~[Ы. It is seen that the velocity of the longi­
tudinal wave monotonously decreases with increase in 
the grain size p, the velocity of the shift wave monoto­
nously grows, and the velocity of the rotational wave, 
if f  is close or larger than unity, has a maximum at a 
certain p  value.

The dependences of the wave velocities of different 
types on the parameters of the interparticle interaction 
were given in [19]. In particular, it was shown there 
that, at low values of the moment interactions (K2 <  K 0), 
the grain size does not considerably affect the values of 
the wave velocities.

Figure 4 shows the dependence of the wave veloci­
ties of different types on the form parameterf .  I f f  < 1, 
then the particles are elongated along the x  axis, if
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f  > 1  along the axis y, and at f  =  1  the particles are 
round. It is seen that, in the rectangular lattice of 
anisotropic particles the velocity of the longitudinal 
wave decreases monotonously with increase in the 
form parameter, and the velocity of the transverse wave 
grows monotonously. The velocity of the rotational 
wave has a local maximum at a certain f value depend­
ing on the particle size and parameters of the force 
interactions. The point of the maximum is shifted to 
the left with increase in the particle size. A t  low parti­
cle sizes, the variations of the wave velocities are 
smoother that at highp  values. Given f  ̂  <x> all three 
velocities tend to some limiting values: c1/c 0 ^
J l  + 2 K j K 0, c2/co ^  V 2  (К  + К )/ К  and C3/C0 ^
2 Л/ К / К , and atf  ̂  0 (i.e., when h2/ h 1 ^  0) c2 ^  0 

and c3 ^  0 .
It also follows from Figs. 3 and 4 that the velocity of 

the longitudinal wave always exceeds the velocity of 
the transverse wave, which, in turn, can be either larger 
or smaller than the velocity of the rotational wave. The 
first fact is well known in theory. The second fact is 
favored by experimental data [30] indicating that in 
artificial granular materials the velocity of the rota­
tional waves can exceed the velocity of the transverse 
waves.

C A L C U L A T I O N  O F  T H E  M O D U L I  
O F  E L A S T I C I T Y  O N  T H E  BASIS 

O F  M E A S U R I N G  T H E  A C O U S T I C  W A V E 
V E L O C I T I E S

gitudinal and shift (transverse) remain and the 
Lagrange function L  takes the form:

L  = M (  2 2 r 2 e2(8  )2a
Ut + Wt + ---- 2  (85  uyt -  wxt)

V 4 e2 ;

M
'  2

2 2 2 2 2 2 ci ( ux + 81  Wy) + c2(wx + §2Uy)

+ R- eT c3( ( 8 5 UXy -  Wx x ) 2 + 83(85Uyy -  WXy)2)
4 P2

(13)

+ Л uxwy + 8 4UyWx) -  JTJ1  (wx -  8 5Uy)2
2  P2 -

Additional terms appear in (13), which contain second 
derivatives with respect to the field of displacements 
absent in the classical version of the elasticity theory. 
Information about the microstructure of the medium 
is kept in these terms. Terms with mixed derivatives 
with respect to time and space Uyt and Wxt take into 
account the contribution of the rotational motions to 
the kinetic energy, and terms with the spatial deriva­
tives Uxy, Wxx, etc. describe the contribution to the 
potential energy of tensions due to the lattice twist. It 
is possible to obtain from (13) the so-called equations 
o f  the gradient elasticity theory containing terms with 
high-order derivatives (in this case, fourth-order):

2
Utt -  c 1 Uxx - 82c2 -

2P2-
1 + 84

2

2s + 85 РГ
2P2'

Wxy

Theoretical estimates [19] and experimental data 
[31] show that the rotational waves in solid state are in 
the high-frequency region (>109—1011 H z ) , where per­
forming acoustic experiments meets with big technical 
difficulties. Nevertheless, information about the 
microstructure of medium can be obtained even from 
the acoustic measurements at rather low frequencies 
(106—107 H z) when the rotational waves in the 
medium do not propagate. To substantiate this state­
ment, we consider the low-frequency approximation 
of Eqs. (7), in which microrotations of the medium 
particles are not independent and are determined by 
the field of displacements. The relation between the 
microrotations ф and displacements u and w can be 
found from the third Eq. (7) by the step-by-step 
approach. In the first approximation,

ф ^ ’ t)X  J r  ( 8 5uy  -  wxc) ' (12)
2 P2

This is a classical relation of the elasticity theory relat­
ing the rotations of the medium particles with the tur­
bulence of the field of displacements. Taking into 
account relation ( 1 2 ) leads to “ freezing” of the rota­
tional degree of freedom. In the medium the transla­
tional degrees of freedom and two types of waves, lon-

R 2P2 d Г d2 (8  ) 2 A(8  )- 2 (8 5uy -  wx) -  c3 A ( 8 5uy -  wx)

wtt -

4p2 dy ^ dt

( c2 -  ^  wxx -  8 1 c1 wyy -  V

(14)
1  + 84 2 85 P 1 1------ 4 s + ux2 2 p

=  R 2P2d 
4  p2dx

Here, the symbol A denotes the differential operator 
A  =  52/5x2 + 8352/5y2, which at 83 =  1 transforms into 
a two-dimensional Laplacian.

It should be emphasized that in spite o f the absence 
of microrotations in Eqs. (14), the medium micro - 
structure affected the coefficients of these equations: in 
the given low-frequency approximation, if  compared 
with initial Eqs. (7), the coefficients at u ,̂, wxy wxx and 
uxy changed.

Furthermore, we consider how one can determine 
the effective moduli of elasticity of the nanocrystalline 
medium from the low-frequency acoustic measure­
ments. Usually, the moduli of elasticity are calculated 
from the experimental data for three-dimensional 
media. Equations which are the two-dimensional

—2(8 5uy  -  W x) -  c 3 A(8 5Щ  -  W x) 
.Я t _
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degeneracy of the classical Lam  equations for media 
with cubic symmetry can play the role of a kind of a 
“ bridge” from the two-dimensional models to the 
three-dimensional ones:

p V Ut t  -  Cn ux x  +  C44Uy y  +  (C 12 +  C 44)Wx y , ( 1 5 )
p y Wt t  -  C 44W XX + Cu Wy y  + (Cu  + C 44) Ux y .

Here, pV =  p /a  is the “bulk” density of the medium.
To compare Eqs. (15) and (14), we assume f  =  1 (in 

this case all dt =  1  and p1 =  p2 =  p) and ignore fourth- 
order derivatives in the latter. As a result, the coupling 
is established between the propagation velocities of the 
longitudinal and shift waves and parameters s  and p, 
on the one hand, and the second-order elastic con­
stants Cj j , C12, and C44, on the other hand:

c l  -  C - , c 2 -  в -  —  , s2 + в  -  C 12 + C 44. (16)
p V  2  p V  2  p V

It should noted that equalities (16) differ from the 
classic ones by the presence of the dispersion parame­
ter p related to the critical frequency of the rotational 
waves [19]. For the degeneracy to the classical case, 
i.e., p =  0 , it is sufficient that one of the conditions: 
p  =  0 (point particles), f  =  0 (particles are rods elon­
gated along the horizontal axis) or K 2 =  0 (noncentral 
interactions between particles are not taken into 
account) is met.

Taking into account the relation c2 =  p + s2/2, 
equalities (16) can be rewritten as follows:

c 2 -  (-11 c 2 -  2C44 — C i2
c 1 -  --- , c 2 -  -------------

p V  p V

2s -2 --C- - -1--2
p V

P -
^ ( C 4 4 ^ C 1 2 )

p V

(17)

The dependences inverse to (17) have the form

C 11 -  p V C 1 , C 12 -  p V S  / 2 ,

C44 -  p V ( 2 c 2  +  s  ) / 4 .

(18)

There are three independent quantities by the number 
of the second-order elastic constants among the propa­
gation velocities of the translational waves in the square 
lattice of round particles. Taking into account that
C jj — C12 =  2pVvtr [21], where vtr is the velocity of the 
transverse wave in the crystallographic direction ( 1 1 0 ) ,

2 2 a 2s -  2 Cj — 4 Vtr, (19)
and, consequently, Eqs. (18) are rewritten as

C 11 -  p V C 1 , C 12 -  p V ( c 1 — 2  v tr)  ,

C44 -  P V( c2 + c2 — 2 v2r)  / 2 .
(20)

Formulas (20) show how one can determine the effec­
tive moduli of elasticity of the nanocrystalline medium 
from the acoustic measurements.

E S T I M A T E  O F  T H E  V E L O C I T Y  
O F  T H E  R O T A T I O N A L  W A V E

Spin waves in ferromagnets are close analogs of the 
waves of microrotations in solid state with the granular 
structure [8 ]. Since up to now there have been no 
direct experimental proofs that the waves of microro­
tations exist in the solid state, it is of interest to esti­
mate the value of the velocity of such wave in the gran­
ular medium.

The dependences of the acoustic characteristics of 
the medium on microstructure parameters ( 1 1 ) were 
found and analyzed above. N o w  we obtain depen­
dences inverse to ( 1 1 ):

K 3
-  M s2(1 + / )  -  M M (1+/)(c2-  pt)

4 a f
2 22a f

K 2 - M $ i(f p 2 + (J2 — p ) )
T 2 Л 22a f  p

K 0 + 2K 1 - M 2
c 1 —[ 3 j ( ^ ^ P ) 2

Л  2 f p 2f

(21)

a

M
-a

j  c22 (lJ2 - p ) + f s 2(p l / 2  — l-
c  1 —  -------------------------------------------------------------------------------------1

Expressions (21) and (11) establish the correlation 
between the parameters of the micromodel and mac­
rocharacteristics of the medium. This interrelation 
can be used for identification of nanomaterials on the 
data of acoustic experiments.

By using the third equality (11) and expressions (21), 
we obtain the formula for the velocity of the wave of 
microrotations:

c -
K + 2

c2 , (2c2 — f s 2 ) (2 ^ 2  + K)

V
-----------------+f 2 2 2  2 f P

(22)

where K  =  K 0/K 1 is the ratio of the central to the non­
central force interactions.

For the medium of round particles ( f  =  1) and tak­
ing into account (19), expression (22) is transformed 
as follows:
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C 3
1 2  

K + 2

(
2 2Cl -  C2 +

V
( c 2 - f  ( c 2 -  2 v l ))(2 p j2  + K )̂ (23)

With the help of (23), one can theoretically estimate 
the velocity of the wave of microrotations in different 
crystals with the cubic symmetry from the propaga­
tion velocities of the acoustic waves along crystallo­
graphic directions (100) and (110). As an example, 
the table presents the theoretical estimates of the val­
ues of the velocity of the rotational wave and the dis­
persion parameter for some materials with cubic 
crystal parameters (lithium fluorite, sodium fluorite, 
sodium bromide). It contains the values of the elastic 
constants C11, C 12 and C44, as well as the density 
p Vtaken from the known experimental data at the 
normal temperature (see [32]). The values of the 
velocities of the longitudinal (c 1) and transverse (c2) 
waves along the axis ( 1 0 0 ) , as well as the dispersion
parameter Vp , were calculated according to formu­
las (17); the velocity o f the rotational wave was calcu­
lated from formula (23); the velocity of the transverse 
waves along the axis ( 1 1 0 ) was calculated from for­
mula vtr =  J ( C 11 -  C 12)/ 2p V [21]; the parameters of the 
force interactions were calculated from formulas (2 1 ) at 
f  =  1. In the calculations p  =  0.9 and K  =  10 (central 
interactions dominate).

Structure parameters for crystals with cubic symmetry

Parameters
structure L iF NaF NaBr

Exper- Density (kg/m3) Pv 2600 2800 3200
imen- 
tal data Elasticity C11 113.00 97.00 32.55

constants 
(109 N/m2) C12 48.00 25.60 13.14

Calcu- Vfelocities of
C44
c1

63.00
6593

28.00
5890

13.26
3190

lated
charac-

waves (m/s)
c2 5477 3295 2045

teristics vtr 3536 3571 1741

Dispersion
c3
s

5659
3396

2896
1309

1092
274

parameter (m/s) 
Parameters of KJa 46.01 58.19 16.11
the force inter­
actions between K /a 4.601 5.819 1.611
particles K2/a 19.897 3.183 0.159(109 N/m2)

K3/a 48.00 25.60 13.14

Crystals

C O N C L U S I O N S
A  two-dimensional model medium with nondense 

packing of anisotropic particles was constructed. It 
was shown that the form and sizes of particles, as well 
as the structure of the crystalline lattice, affect only the 
coefficients of the equations of dynamics with accu­
racy to the coefficients coinciding with equations of 
the Cosser two-dimensional continuum consisting of 
central-symmetric particles. The interrelation between 
the macroparameters of such media and parameters of 
their microstructure was elaborated and analyzed. The 
transparency of such a correlation opens great possi­
bilities for designing of materials with desired physi­
cal-mechanical properties. This model allows both 
obtaining an idea about the qualitative effect of the 
local structure on the effective moduli of elasticity and 
performing quantitative estimates of their values. For­
mulas are obtained that allow the determination of the 
moduli of elasticity of the granular material from the 
measurements of the velocities of the acoustic waves 
propagating along different crystallographic direc­
tions. For some materials, the velocity of the rotational 
wave was estimated.
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