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A b s t r a c t —We examine specific problems of measuring attenuation and velocity of ultrasound in engineering 
materials using the pulse method of exciting and receiving elastic oscillations. These problems are related to 
the influence of the internal structure of metals and alloys on the propagation in them of elastic longitudinal 
and shear waves in the megahertz frequency range. Using the example of a probing signal in the form of a 
radio pulse with a smooth envelope of Gaussian shape, additional sources of measurement error of the echo 
method of evaluation of the main acoustic characteristics used in problems of nondestructive testing and 
ultrasonic diagnostics of materials with microstructure were revealed.
D O I :  10.1134/S1063771010060163

Attenuation and propagation velocity of ultrasonic 
waves are at present very important informative char­
acteristics of nondestructive testing and diagnostics of 
engineering materials. The use of these characteristics 
in the audible frequency range began neither today nor 
even yesterday— at large installations, maintenance 
personnel check the operability of train car wheels by 
ear using hammers and salespeople in stores listen to 
the sound of music that plates and glasses make when 
stroking a finger around the rim. Clearly, professionals 
in this area take into consideration the duration 
(attenuation of oscillations) and the timbre of sound 
(the main frequency proportional to the velocity of 
sound, and its harmonics). Modern ultrasonic and 
electronic radio equipment is quite capable of imple­
menting calibrating impact action and the “ sensitive 
ear” of a professional. High accuracy has been 
achieved in measuring frequency (time) intervals 
characterizing frequency (time) shifts of electric sig­
nals. A t the same time, the abundance of papers and 
inventions is simply surprising, in which the same high 
accuracy is ascribed to determination of the physical 
parameters of oscillations and waves based on these 
measurements. This especially refers to the pulse 
method— the most widespread in the ultrasonic test­
ing of manufactured products for various purposes. So,

So, the physical basis of traditional nondestructive 
testing is reflection and refraction of elastic waves at 
the interface of two media. The fact and time of an 
echo signal arriving is usually fixed, and on this basis, 
the presence and location of a defect are evaluate, but 
however much we increase the accuracy in measuring 
the intervals between electric pulses, because of signal 
distortion in the material, we can hardly evaluate the

time interval between sent and received ultrasonic 
pulses with an error much less than the pulse duration. 
In order to achieve the desired effect, we can move 
away from using video pulses actually applied in non­
destructive testing, as well as measuring the casing wall 
thickness, and switch to so-called radio pulses with 
clearly expressed high-frequency filling. It then 
becomes possible to follow more accurately the move­
ment of some “ fixed” point of the pulse profile, for 
instance, of a certain amplitude maximum of the car­
rier frequency. But how do we choose this point and 
compare the results of our measurements to those 
made by other authors? Which point did they choose? 
D o n ’t the measurement results depend on the choice 
of the fixed point?

In order to evaluate the size of the defect, attenua­
tion of the sound signal is determined. From  attenua­
tion of the probing signal, we evaluate not only the 
“ size” of the defect, but also the attenuation of elastic 
waves deep in the material. The majority of ultrasonic 
testing methods are based on examined preliminarily 
“ calibrated” dependences of ultrasound attenuation 
on particular characteristics of the material [1]. This is 
a result of the fact that attenuation is much more sen­
sitive to changes in the structural and stress-strain 
properties of the material than the wave velocity. How ­
ever, the number of factors decreasing the accuracy of 
its determination is much larger. Since the accuracy of 
amplitude measurements itself is at least an order less 
than frequency (time, phase) measurements, it is clear 
that reliable determination of the ultrasonic attenua­
tion coefficient in the material is relatively compli­
cated. In determining the size of ultrasonic attenua­
tion by the decrease in amplitude of echo pulses, the
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final result is affected not only by absorption (scatter­
ing) of elastic waves in the material, but also by the 
state of the reflecting surface and diffraction spreading 
of the ultrasonic beam, energy losses in the contact 
layer, and other factors. A  characteristic difference in 
the propagation of acoustic pulses from propagation of 
radio waves or signals in electric circuits is the fre­
quency dependence of the wave attenuation coeffi­
cient, the physical mechanisms of which can be differ­
ent depending on the structure of the material and 
wavelengths.

Here, we limit ourselves to the influence of the 
internal structure of the material on the accuracy of 
measuring the speed and attenuation of elastic waves, 
since among other sources of errors in ultrasonic mea­
surements this question has been explicitly considered 
by researchers. In  implementing precision ultrasonic 
measurements in metals and alloys, they cannot be 
considered a continuous medium of elastic wave prop­
agation in the megahertz range (millimeter wave­
lengths) without loss of accuracy in determining the 
acoustic characteristics. In  this specific idea, it can be 
characterized, in my opinion, by two basic properties:

— the presence of scale parameters related to the 
dimensions of crystals, grains, inclusions, and other 
features of the structure;

— the presence of sharp boundaries between com­
ponents of the structure.

In  comparison to the dimensions of grains, inclu­
sions, and pores in common engineering materials, 
these are “long” waves. However, at the contemporary 
developmental level of ultrasonic technique, it 
becomes noticeable how the frequency dependence of 
the velocity and/or attenuation of ultrasound affect 
the propagation of elastic waves related to the presence 
of “ internal” scale parameters in the medium. The 
existence in the medium of a scale parameter much 
less than the wavelength leads to weak dispersion of a 
high-frequency wave and to their predominant Ray­
leigh-type scattering.

In this case, common pulse methods of measuring 
the velocity and attenuation of ultrasound have not 
always been at the necessary level. This is because 
propagation in such a medium of frequency packets in 
the time domain of corresponding pulses with a 
smooth envelope, sufficiently long in comparison to 
the period of the carrier (radio pulse analogues), 
already finds specific features not characteristic of 
harmonic waves [2 ]. What can we say about pulses of 
more complex shape, moreover, video pulses. Applica­
tion of relatively short pulses in comparison to the 
period of the main frequency results in sufficient signal 
power and high-resolution capability of the pulse 
method in testing components of relatively small 
thickness. As well, however, the procedure of obtain­
ing information on state of the material becomes com­
plicated in comparison to, for instance, resonance or 
interference methods due to pulse distortion in

a structurally inhomogeneous medium. There should 
be more focus on allowance for how the pulse charac­
teristics and the medium influence the accuracy in 
determining the velocity and attenuation of ultra­
sound in a material with a frequency dependence on 
the velocity and/or attenuation of ultrasound.

Study [3] addressed the question of errors in mea­
suring the ultrasonic attenuation coefficient, which 
were determined by the pulse shape and the character 
of wave attenuation in the material. For a bell-shaped 
(Gaussian-shaped) pulse of the form

R  ( t) ~ exp  ̂• t -1 "' m  0t  -2
v 2 V

(1)

propagating in a medium with an attenuation coeffi­
cient of a =  a 0

to
®0'

(s is even), approximate expres­

sions were obtained determining the dependence of 
the main frequency ю0 and the inverse pulse duration 
on the path x  traveled by it. Introducing in them an 
effective pulse duration of 2t0 instead of its inverse 
value, we obtain

ю (  x )  =  № s
2 24-1

® 0  [ 1  -  s(ю0т0) aoX] (2)

T2(x) = T° = T°[ 1 + s(s -  1 )(®0x0) W ]. (3)
Formulas were obtained in the smallness approxima­
tion of 2 ( ю°т0 )-1 , which with reference to ultrasonic
testing was taken at 1 0 - 2—1 0 -4  (a dimensionless effec­
tive pulse duration of n =  0т0/ T 0 near 2—20 periods T0 

of the main frequency). The value of the attenuation 
coefficient measured over the amplitude maximum in 
the pulse in this case is determined by the formula

a (x )  = a 0[ 1  + s (s -  1 ) ( 2 ю°t °)
2 2 2 -1 - s ( 2 ю0х0) a 0x ].

Formula (3) shows the influence of two competing 
effects on the measurable value of the attenuation 
coefficient: its increase due to pulse spreading and 
decrease due to a decrease in the main frequency. In 
[3], a quantitative estimate of the relative error in mea­
suring attenuation by a pulse with an effective duration 
of nearly two periods of the main frequency, the ampli­
tude of which decreased by a factor of e5 (a0x  =  5): at 
s  =  2, the error is 18%; at s  =  4, it reaches 70%.

In this, the measuring attenuation is less than the 
actual attenuation, since the value of a 0x  =  1  — 1/ s  at 
which the measured attenuation coefficient coincides 
with the actual one is, respectively, 0.5 and 0.75. Obvi­
ously, to increase measurement accuracy, we should 
choose such a range of changes in signal amplitude 
that this equality will be approximately satisfied, 
although this is not always possible during strong signal 
attenuation or large dimensions of the samples under
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study. For steel in the megahertz frequency range a ~ 
3 m—1 and the corresponding distance is 15—25 cm, 
which is feasible to implement even at a large thickness 
and during multiple passes of the pulse through a rela­
tively small thickness o f the material. A t the same 
time, for pig iron, attenuation can be 1 0 —20  times 
greater and this distance is 1 —2  cm.

Quantity s  is related to physical mechanisms of 
attenuation of elastic waves in a medium; so, at s  =  2 , 
signal attenuation is determined by the presence of 
dislocations or coherent scattering of waves; s  =  4 cor­
responds to the region of Rayleigh scattering [4, 5]. In 
addition to scattering caused by multiple reflections of 
an elastic wave at the boundaries of the structural com­
ponents, in a real medium, there can be wave absorp­
tion, for instance, hysteretic losses and other forms of 
internal friction. This mechanism is characterized by a 
linear dependence of ultrasonic attenuation on fre­
quency, i.e., s  =  1 .

In the long term, theoretical studies of the problem 
were implemented for problems of medical diagnosis 
in studying ultrasonic attenuation in biological 
objects. Experiments have shown that with such 
objects, condition 1  < s  > 2  is almost always satisfied 
[6 ]. In [6 ], an equation was found for evaluating the 
main frequency of a pulse in such a medium, and in [7] 
for a narrowband frequency packet, an analytical solu­
tion to this equation was obtained. For cases s  =  1 and 
s  =  2 , this solution in fact coincides with formula ( 1 ), 
although s  is odd. However, for these cases, it is possi­
ble to find exact solutions using inverse Fourier trans­
form, leading to generalized Poisson integral [8 ].

The mechanism of the linear frequency depen­
dence of attenuation is not directly related to the pres­
ence or absence of microstructure; however, it can 
make its own contribution to the experimental value of 
the attenuation coefficient in the medium. One can 
see from formulas (2), (3) or the result of special con­
sideration of the question [9] that in this case “ dissipa­
tive” pulse spreading is absent; therefore, the mea­
sured attenuation will always be less than the actual 
attenuation.

In a real material, there are usually several mecha­
nisms of ultrasonic attenuation and quantity s  is deter­
mined as the result of their competition. Judging from 
the results of experimental study [ 1 0 ], for steels in the 
frequency range of 5—20 M H z , its value is between 2 
and 4 (in steel 40X3 it lies between 3 and 4, and for 
steel 12X18H10T, it can be taken as 2).

Thus, the dynamic range for measuring the attenu­
ation coefficient in materials with microstructure 
should be chosen such that the amplitude of echo sig­
nals by which the value of the attenuation coefficient 
is judged differs by roughly a factor of 2. If  this is 
impossible under the experimental conditions, then to 
estimate the true value of the frequency-dependent 
attenuation in a material, formula (2 ) should be used.

In applying “velocimetric” methods of studying 
the properties of a medium, obviously the most suit­
able informative parameter is the phase velocity. 
Strictly speaking, it is not related at all to the spatial 
displacement of any substance if the value of the 
“ phase of oscillations” cannot be considered as such. 
The phase velocity is associated with a harmonic wave 
and is relatively easily determined in standing wave 
systems and in interferometers [11]. As is known, its 
physical sense is as follows: if at the selected point of 
space the phase of oscillation with frequency f  =  ю/2 я 
is equal to ф, then after the time n T  =  n / f  or at the 
moment in time at distance пЛ  it will be equal to ф + 
2nn. The ratio of the space and time period of oscilla­
tions of the medium naturally has the dimensionality 
of speed. However, it does not determine any material 
motion (it is not at all surprising that the propagation 
“velocity” of electromagnetic waves along a waveguide 
can exceed the speed of light, because this is “ appar­
ent” motion, like blinking Christmas tree lights or 
moire patterns).

However, as a consequence, quantity Vf =  Л / T  =  A f  
for a given frequency of oscillations excited in the 
medium is determined exclusively by the properties of 
the medium. For instance, the propagation velocities 
of bulk longitudinal and shear waves in an isotropic 
solid not possessing an internal structure do not 
depend on frequency and are determined by elastic 
moduli and the density of the medium. Resonance 
methods of measuring the phase velocity are based on 
using this definition and fixing the frequency of this 
wave, the wavelength of which and the length o f the 
resonator are found in the relation пЛ  =  2L. However, 
to support resonance oscillations of a solid medium, 
larger energy expenditures are required; in addition, 
vibrations of complex-shaped details of require a quite 
cumbersome description.

The simplest and most economical way to excite 
elastic waves in a material is impact excitation (if 
maintenance personnel use a hammer for this, then a 
salesperson needs only two fingers!). In pure form, this 
method is used in nondestructive testing, but the sen­
sitive ear is replaced by a microphone and frequency 
meter (or a spectrum analyzer). The most widespread, 
however, are pulse-echo methods, where the role of a 
wheel or a plate is played by an electromechanical 
transducer excited by a powerful electric pulse and 
connected (in the oscillation sense, because there are 
noncontact transducers) to the surface of the studied 
material.

In this case, a wave train propagates in the medium;
i.e., something is already “ in actuality” displaced in 
space. The speed of displacement of the envelope 
maximum of a quasi-harmonic wave, in a medium 
without dissipation coincides with the group velocity 
of the main frequency corresponding to the maximum 
of the amplitude spectrum. I f  in the medium there is 
not only no dissipation, but also no dispersion (all the
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harmonics “ travel” at the same speed), the phase 
velocity coincides with the group velocity, assuming in 
such an indirect way a certain physical sense. As well, 
any point of the wave train corresponding to a certain 
phase of oscillation “ moves” at this speed.

In  a dispersive medium, a specific phase velocity 
corresponds to each harmonic; therefore, tying our­
selves to a certain phase of oscillation in the wave train, 
it is not so easy to forecast when and at what point in 
space we will again see this phase. For a narrowband 
frequency packet of Gaussian form (1) in a medium 
with weak dispersion, fully characterized by dispersion 
parameter D  =  d2q /d & 2 [12] (q  is the propagation con­
stant) at the frequency range occupied by the pulse, it 
is possible to show that these are only two points equi­
distant from the “ amplitude center” (R'(t) =  0) of the 
pulse, determined by the equation [13]

( t -  t0)2 = 2t 0(D x )- 1 ( 1 + t -4D 2x 2) arctan( 0.5т-2D x ). 

Here, 2т0 >  T0 is the effective duration of the wave
train, and quantity t D =  т) ( 1  + т-4 D x 2) corresponds
to the pulse half-duration squared in a weak dispersion

-2medium. A t  a small value of parameter t 0 Dx, these 
are points т ~ t0 ± t 0 (here the pulse envelope has the 
largest derivative). We call these the pulse “ phase cen­
ters” (in review [2 ], these are “ frequency centers,” but 
here it is more logical to call a frequency center the 
point of the pulse profile where the equality ю =  ю0 = 
2nf0 is satisfied). Their location is symmetrically rela­
tive to the frequency center coinciding in a conserva­
tive medium with an amplitude center. By analogy, it is 
possible to assume that for a pulse with a meander- 
type envelope, the so-called “velocity of front propa­
gation” will be the closest to the phase velocity of the 
main frequency (if this inflection point of the envelope 
is considered the “ front line” (R"(t) =  0)). In the 
adopted approximation of a sufficiently long pulse, the 
location of phase centers is determined only by the 
function of their envelope. During further pulse prop­
agation, the phase centers “ shifting” from the ampli­
tude center in opposite directions.

In a medium without frequency-dependent atten­
uation, the amplitude center of the pulse coincides 
with the frequency center (ю =  ю0) and is displaced 
with the group velocity of frequency ю0. I f  the high- 
frequency components of the spectrum of the signal 
attenuate more quickly than the low-frequency com­
ponents, but there is no dispersion, then the main fre­
quency in the pulse increases everywhere according to 
formula (2). When there are in the medium both dis­
persion and frequency-dependent attenuation of 
ultrasound, it is convenient to characterize wave pro­
cesses via a complex propagation constant, the real 
part of which is determined by dispersion properties, 
and the imaginary part, by the dissipative properties of 
its structure.

During propagation of a narrowband frequency 
packet in such a medium, the “ balance” of the har­
monics is violated and the amplitude-frequency cen­
ter splits into an amplitude (R'(t) =  0) and a frequency 
(ю =  ю0) center. In the case of linear dependence of 
attenuation on frequency (s =  1 ), this point on the 
time axis is determined by the equality [9]:

t3
а 0т0 l0„

t  +gr D  ю0
(4)

Here for tgr we take the time by which the amplitude 
maximum in the conservative medium would have 
arrived (R'(t) =  0, ю =  ю0). The pulse duration does not 
change owing to the presence of “ linear” attenuation 
in the medium. I f  the influence of dispersion on prop­
agation of the wave train is more than, or comparable 
to, the influence of absorption, then it is possible to 
find this point in the area of the “ main part” [2 ] of the 
pulse.

From  the condition of equality of the derivative of 
the pulse envelope to zero, it is possible to find the 
point of its profile where the amplitude of oscillations 
reaches the maximum value [9]:

t0 tgr
2 2a 0T0D x  ------------ т

D ю 0 t 0
(5)

In a medium with small-scale inhomogeneity (D  > 0), 
the maximum of the envelope moves more quickly 
than in an absorptionless medium and vice versa. In a 
weakly dispersive medium with absorption, the pulse 
amplitude center still moves at a velocity close to the 
group velocity of the carrier frequency.

Dominance of the dispersive or absorption proper­
ties in a medium is determined by the value of dimen­
sionless parameter N  =  а 0т0̂ ю 0, which at the given 
parameters of pulse is a characteristic of the material. 
If  this parameter is on the order of unity, then the devi­
ation of the amplitude (R'(t) =  0) and frequency (ю = 
ю0) pulse centers becomes significant.

t3 -  t0 = а 0т 0

D ю г
1  +

тл2 2—D  x 
4""T0 2

t 0  =  N t D

As well, neither is displaced with the group velocity of 
the main frequency, which is shown by formulas (4) 
and (5). The positions of phase centers remaining 
symmetrical relative to the frequency center are also 
shifted relative to the amplitude center.

For the other mechanisms of wave attenuation in 
the medium (s =  2 or s  =  4), expressions (4) and (5) 
take the form
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f3  tg r

s a 0 T s  , r T s—0—1 x. = s N -  t 0 ,
Д и 0  s  1  0T0

r>2 2 2
t  t  =  s N D  x  T s  т
' 0 -  V  =  s N —4— 2T 0’ 

T 0 T 0

and the value of deviation of the amplitude and fre­
quency centers is determined by a formula

t3 - t 0 = sN 1  +

n2 2*1 D  x
4 T0

2

■ s N - 4  t 0

T0

However, in this case for a sufficiently long wave train, 
it is possible to find the fixed points being displaced as 
though they belonged to the harmonic wave of fre­
quency ю0 [13]. Since their position relative to the 
amplitude center is asymmetrical, during propagation 
of the pulse one of them will go beyond its limits earlier 
than the other. In  a medium with positive dispersion 
(D  > 0), as a characteristic point for media with a 
microstructure, it is preferable to use a fixed point 
located in the area of inflection of the envelope in the 
first half of the pulse, for determining the phase veloc­
ity. This is because, in this part, the amplitude center 
of the pulse is displaced toward the phase center and 
the indicated point goes beyond the pulse limits later. 
It coordinates are determined by the negative root of 
the equation

( t - t 3)2 = 2t 4( D x)- 1 (1 + s(s -  1 )(®2T0) *a 0x 

+ x04D 2x 2) arctan[0.5t 02D x],

where the value t 2 d =  t 0 (1 + s(s  — 1)( ®0 t 2 )-1aoX +
T04 D 2x 2) corresponds to the pulse half-duration 
squared in the medium under consideration.

In  practice it is possible to isolate certain groups of 
materials for which larger or smaller parameters N  are 
characteristic. The dominant influence of dispersion 
on the pulse propagation of shear waves with a fre­
quency of 5 M H z  in an aluminum-magnesium alloy 
( N  < 1) has been mentioned. As well, the difference in 
the displacement velocities of various points of the 
pulse profile attains 0.1% [13]. A n  increase in the 
period of oscillations is observed at the onset of the 
pulse and a decrease in it at the end (D  > 0). From  the 
experimentally observed change in the frequency 
modulation index in the pulse, it was possible to deter­
mine the value of dispersion parameter D  characteriz­
ing the microstructure of the material [14].

For maraging steel, the indicated difference in 
velocities is five times less, but the frequency-depen­
dent attenuation exerts a substantial influence on wave 
processes ( N >  1). Estimation of its value helped in 
increasing accuracy of the ultrasonic method of

mechanical stress measurement in a medium with 
microstructure [15].

Thus, in studying the physical effects characterized 
by relative changes in the phase velocity of ultrasound 
on the order of 0.01-0.001% (for instance, the phe­
nomenon of acoustoelasticity), the influence of the 
microstructure of engineering materials on ultrasonic 
pulse propagation becomes noticeable. Therefore, the 
considered specific features of methods for measuring 
the phase and group velocity and the attenuation of 
elastic waves and their frequency dependence at the 
contemporary level of ultrasonic technique developing 
are becoming of particular interest for media with 
microstructure.
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