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A b s t r a c t — A  s u r v e y  o f  a p p l i c a t i o n  o f  s u r f a c e  a c o u s t i c  w a v e s  f o r  n o n d e s t r u c t i v e  d i a g n o s t i c s  o f  l a y e r e d  m e d i a  

i s  p r e s e n t e d .  A  m a t h e m a t i c a l  m o d e l  f o r  d e s c r i p t i o n  o f  p r o p a g a t i o n  o f  s u r f a c e  a c o u s t i c  L o v e  w a v e s  i n  l a y e r e d  

a n i s o t r o p i c  n a n o c o m p o s i t e s  b a s e d  o n  t h e  m o d i f i e d  t r a n s f e r  m a t r i x  m e t h o d  i s  c o n s t r u c t e d .  D i s p e r s i o n  r e l a ­

t i o n s  f o r  m e d i a  c o n s i s t i n g  o f  o n e  a n d  t w o  e l a s t i c a l l y  a n i s o t r o p i c  l a y e r s  i n  c o n t a c t  w i t h  t h e  a n i s o t r o p i c  h a l f ­

s p a c e  a r e  a n a l y z e d .  W a v e s  w i t h  h o r i z o n t a l  t r a n s v e r s e  p o l a r i z a t i o n  o f  n o n c a n o n i c a l  t y p e  a r e  c o n s i d e r e d .
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1. I N T R O D U C T I O N
1.1. Modern State o f  the Problem

The growing needs of microelectronics and other 
fields of modern technology require introduction and 
development of methods of nondestructive analysis of 
multilayered materials. The basis of these methods is 
acoustic waves, thermal waves, or electromagnetic 
waves, including waves of the X-ray spectrum. Master­
ing and application of extremely high frequencies in 
acoustics makes it possible to analyze the properties of 
very thin layers and internal defects in multilayered 
materials. Modern acoustic setups provide generation 
of acoustic waves with frequencies of the order of 1 — 
10 G H z , which makes feasible studies of physical and 
chemical properties of multilayered structures con­
taining up to five to seven anisotropic layers with a 
thickness of the order of 0.1—1 pm. Experimental 
mastering of the frequency range of 0.1—1 T H z  pro­
vides opportunities for investigation of multilayered 
media containing up to 50 anisotropic layers with a 
layer thickness of 1 0 —10 0  nm.

Remark 1. 1.  Here it should be noted that growth of 
the frequency of acoustic body waves above 4—5 T H z  
turns out to be impossible due to fundamental consid­
erations. For these frequency values, the wavelengths 
of acoustic body waves for most materials applied in 
microelectronics turn out comparable with the dis­
tance between neighboring atoms and, therefore, fre­
quencies higher than 4—5 T H z  are beyond the “ cut­
off” frequency [ 1 ].

Usually the determination of physical and 
mechanical characteristics of layers in acoustic meth­
ods is connected with the measurement of propagation 
velocities and polarization of acoustic waves. These 
measurements make it possible to construct dispersion 
relations connecting the phase velocity of the wave and

the frequency. The comparison of experimentally 
determined dispersion relations with theoretical data 
provides determination of the properties of internal 
layers, which cannot be studied using direct methods. 
Naturally, it is necessary to develop an adequate theo­
retical method for such analysis.

It is shown below that the available theoretical 
methods for analysis of propagation of surface waves in 
layered media are limited by isotropic layers contact­
ing with isotropic half-space for a relatively small 
number of layers (usually not larger than five) or trans­
versally isotropic or orthotropic layers and similar sub­
strate for one to three layers. There also exists a group 
of methods connected with the investigation of waves 
in periodic layered media, but these methods are inap­
plicable for problems of identification of the proper­
ties of separate layers.

A t the same time, the needs of modern microelec­
tronics require the development of methods and cor­
responding numerical algorithms applicable for anal­
ysis of propagation of surface waves in systems with 
10 —20  anisotropic layers in contact with an anisotro­
pic substrate (usually silicon monocrystal serves as the 
latter). Here, it is reasonable to note that the similar 
problem occurs in seismology; however, in this case 
frequencies not higher than 1 k H z  are used. In seis­
mology the development of theoretical methods for 
analysis of propagation of surface waves in systems 
consisting of a large number of layers is quite topical.

1.2. Basic Types o f  Surface Waves Used 
in Nondestructive Diagnostics

The following basic types of surface waves can 
propagate in elastic layered media: Lamb waves prop­
agating in separate layers which have elliptic polariza­
tion in the sagittal plane (plane formed by the normal
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to the wave front and the normal to the layer surface); 
Raleigh waves propagating in the half-space, which 
have the same polarization as Lamb waves and attenu­
ate in the depth; Stoneley waves propagating at the 
interface of two contacting half-spaces, which have 
sagittal elliptic polarization and attenuate in the depth 
in the half-spaces; and Love waves propagating in the 
system layer (layers)-contacting half-space the polar­
ization of which is orthogonal to the sagittal plane.

Lamb and Love waves are most important for appli­
cation in microelectronics because they possess dis­
persion properties and provide reconstruction of phys­
ical and chemical properties of separate layers in mul­
tilayered systems using corresponding dispersion 
curves. Unlike these waves, Raleigh and Stoneley 
waves are much less applicable for nondestructive 
diagnostics, since they do not possess dispersion prop­
erties.

The parameters yk, k  =  1, 2, in (1.1) correspond to 
the complex roots of the Christoffel equation, which 
will be introduced below. In Eqs. (1.2), (1.3) Ck, k  =  1, 
2  are the four-valent elasticity tensors of the layer and 
the half-space, respectively, and h is the layer thick­
ness.

Remark 1.2. According to representation (1.1),  the 
attenuation in the depth of the half-space is provided 
by the Christoffel parameter y2 with negative imagi­
nary part.

According to [2], the following holds.
Proposition 1. 1.  (1) Studied waves can occur in an 

isotropic layer and a half-space contacting with it iso­
tropic if and only if the phase velocity satisfies the con­
dition

c[ < c < c l,  (1.4)

1.2.1.  Love waves. These waves possess horizontal 
transverse polarization and propagate in the system 
elastic layer (layers)-half-space. In this case for the 
wave to exist in the half-space the attenuation condi­
tion over the depth should be satisfied. These waves 
first described in [2 ] have been intensely studied theo­
retically [3—5] and experimentally [6 —8]. In spite of a 
relatively simple structure (Love waves consist of one 
partial wave in the half-space and two partial waves in 
the layer), a corresponding theory for description of 
Love waves in an anisotropic layer and anisotropic 
half-space contacting with it has not been completely 
developed yet.

The displacement field corresponding to the Love 
wave can be represented in the form

I « 1  (x ) = m(C,e  + C2e )e l ,
I r \ r ̂  «T2x\ ir(n ■ x - ct)1 u2(x ) = m(C3e )e v ; ,

where u1  and u2 are related to displacements in the 
layer and the substrate, respectively; m is the unit 
amplitude (polarization vector; it is assumed that the 
vector m is orthogonal to the sagittal plane formed by 
the vector n determining the wave front propagation 
direction and the unit vector v normal to the free sur­
face); x' = v • x  is the transversal (vertical) coordinate, 
below which it is assumed that it takes negative values 
in the half-space; r  is the wave number; c  is the phase 
velocity; and t is the time. The unknown complex 
coefficients Ck are determined to a factor from the 
boundary conditions at the external plane boundary,

tv Ix' = h -  v • C  • • V x u  = 0, ( 1 .2 )

and the contact conditions at the interface (x' =  0 ),

I v • C  • • V xu 1 = v • C 2 • • V xu2 ,
1 u1 = u2.

(1.3)

where d  =  I— , k  =  1 , 2 , are the velocities of trans-
Pk

verse body waves in the layer and the half-space, 
respectively, and —k and Pk are the corresponding 
Lame constants and densities.

(2) The dispersion relation between the phase 
velocity c and the frequency ю can be represented as

/ 2
ю -  c ( P 1 cю -  -  -----

h V —1

1/2

( (  2) 1/2̂ \
1  _ P2!

X arctan —2 —2 + nn
—1 P A 2 _ 1

V V V —1 ) ) )

(1.5)
n -  0 , 1 , 2 , . . . .

Corollary 1.
(a) For the fixed frequency ю, there exist a finite 

number of Love waves propagating with different
phase velocities c e ( c \ ; c l ).

(b) For the fixed phase velocity c e ( c 1 ; c2), there 
exist an infinite number of Love waves propagating 
with different frequencies ю.

Corollary 2. There do not exist Love waves if
1  1

c 1 > c2 .
In [9] it was shown that Love waves can propagate 

in the system consisting of an anisotropic layer and the 
half-space in contact with it. It was assumed that both 
the layer and the half-space possess an axis of elastic 
symmetry of the fourth or sixth orders oriented along 
the vector m. For this system the propagation condi­
tions and dispersion relations were similar to (1.4) and 
(1.5). In [10] based on the complex formalism disper­
sion relations for the Love waves in a transversally iso­
tropic layer and a half-space were obtained.
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For layered media consisting of a large number of 
layers contacting with the half-space there do not exist 
analytical solutions similar to (1.5). Dispersion rela­
tions for the Love wave in such media can be obtained 
numerically using two matrix methods initially pro­
posed for analysis of Lamb waves. These methods are 
known as the transfer matrix method (sometimes this 
method is called the Thomson—Haskell method after 
the developers [ 1 1 , 1 2 ]) and the global matrix method 
proposed in [13, 14]. The transfer matrix method is 
based on the successive solution of contact boundary 
value problems at interface boundaries and construc­
tion of corresponding transfer matrices. Below this 
method will be discussed in more detail. The global 
matrix method is based on the solution of ordinary dif­
ferential equations with piecewise homogeneous coef­
ficients resulting in the construction of the special 
“ global” matrix.

After the appearance of the global matrix method, 
it was assumed that numerical realizations of this 
method result in more stable solutions than for the 
transfer matrix method. Then various modifications of 
these methods were proposed to make them numeri­
cally stable [15]. The problem of numerical stability 
becomes especially topical if  the layered medium con­
sists of a large number of layers. In this case the advan­
tages of the transfer matrix method become more pro­
nounced since the order of corresponding matrices 
does not change with the number of layers; in the case 
of the global matrix method the order of the corre­
sponding matrix linearly increases with increasing 
number of layers.

Love waves in a single isotropic layer with a rough 
free surface on an isotropic half-space were studied in 
[16, 17]. In [14] the theoretical method for investiga­
tion of propagation of Love waves in a multilayered 
isotropic medium by reduction of the problem to the 
system of ordinary differential equations with piece­
wise constant coefficients was proposed.

In seismology Love waves are regularly registered in 
the case of seismic activity [18, 19] and underground 
explosions [20—22]. These waves are also used for 
identification of the properties of sedimentary [23— 
25] and nondestructive material defectoscopy [26]. It 
should be noted that, in most studies devoted to Love 
waves, it is assumed that the layer and the half-space 
are elastically isotropic or transversally isotropic. A t 
the same time, for application of these waves in mod­
ern methods of nondestructive diagnostics, it is neces­
sary to develop existing methods for account of elastic 
anisotropy of contacting materials.

1.2.2. Lamb waves. These waves first described in 
[27, 28] for an isotropic elastic layer with free bound­
ary planes, unlike Love waves, as a rule consist of sev­
eral partial waves with different polarization. Lamb 
waves are widely used in nondestructive methods of 
investigation due to their dispersion and insignificant 
attenuation. One of the first studies devoted to the

application of Lamb waves for nondestructive diag­
nostics is monograph [29]; in this study detailed anal­
ysis of dispersion relations was performed, the struc­
ture of these waves was examined, and the existence of 
several branches in the spectrum of these waves was 
discovered. In [4] the correlation of Lamb waves with 
the so-called carrier wave propagating in membranes 
was studied.

According to [30], it is convenient to seek the field 
displacements in the Lamb wave in the form

6 6
/ \ ir(Ykv ■ x + n ■ x - ct)u( x) = ^  Z knk{x ) = ^  Z km ke , ( 1 .6)

k = 1 k = 1
where u are the field of displacements, uk is the field of 
displacements caused by the k  th partial wave, Z k are 
the complex coefficients determined to a scalar factor 
from the boundary conditions, mk in the general case 
are the normalized vector complex amplitudes deter­
mined using Christoffel equations, yk— Christoffel 
equations roots, r  is the wave number, v is the vector of 
external unit normal to the median plane n v of the 
plate, n e  n v is the vector of the wave normal in the 
median plane which determines the direction of prop­
agation of the wave front, and c is the phase velocity. 
For determination of the amplitudes mk, the Christof­
fel parameters yk, and the dispersion relations between 
the phase velocity and the wave number or frequency, 
usually the so-called Stroh formalism [31] or the gen­
eralized Hamiltonian formalism [30] are applied.

It is probable that the equations for description of 
propagation of Lamb waves in a multilayered plate 
with free boundary planes which consists of different 
contacting isotropic layers were first obtained in [ 1 2 ]. 
Later, this method, called the transformation matrix 
method, was also used for analysis of Lamb waves in 
layered plates with anisotropic layers. A n  alternative 
approach using the global matrix method designated 
for analysis of Lamb waves in layered plates was pro­
posed in [14] and studied in detail in [32].

Here it should be noted that, although from the 
fundamental point of view both methods provide the 
study ofwaves in a medium containing any finite num­
ber of layers, practical difficulties connected with 
computer realization of these methods prevent from 
efficient study of waves in media containing more than 
five to seven different layers. This is related to the high 
sensitivity of these methods to rounding error. It can 
be shown that, generally speaking, the accuracy of cal­
culation of dispersion dependences for Lamb and 
Love waves exponentially decreases with increasing 
number of layers.

One of the first publications on theoretical studies 
of propagation of Lamb waves in anisotropic layers was 
[33]. Later, similar methods were used for investiga­
tion of anisotropic plates in [34, 35], and in [36] a 
method was proposed that reduces the problem of the 
Lamb wave in a multilayered anisotropic plate to a sys-
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tem of algebraic equations. In [26, 37, 38] an analyti­
cal equation for description of propagation of Lamb 
waves in a multilayered plate with anisotropic layers 
was obtained; however, simplifying hypotheses similar 
to Kirchhoff-Love hypotheses in the theory o f plate 
bending were used.

In many cases the account of elastic symmetry of 
anisotropic layers makes it possible to simplify the 
analysis of Love waves, for example, in [14, 19, 39, 40] 
analytical expressions for the equation describing dis­
persion dependences of Lamb waves were obtained. In 
[15, 41] a numerical-analytical method was proposed 
for investigation of combined Lamb-Raleigh waves 
propagating in the system anisotropic layer-half­
space. Studies of propagation of Lamb waves in media 
with arbitrary elastic anisotropy were begun not long 
ago [30].

In one of the first papers on investigation of Lamb 
waves in periodic layered composites [42], a six­
dimensional complex formalism was applied; this for­
malism was earlier used only for analysis of Raleigh 
waves. In [43] transverse surface waves in a periodic 
layered plate were studied based on Floquet partial 
solutions. The heuristic method for analysis of Lamb 
waves in a periodic layered structure based on averag­
ing was proposed in [44], and in [45] experimental ver­
ification of this averaging algorithm was performed. 
The result obtained in [45] is quite interesting: the 
resulting wave in the averaged medium represents the 
Raleigh wave, while in each layer it is the Lamb wave.

1.2.3. Raleigh waves. It was noted above that 
Raleigh waves propagate in an elastic half-space, 
attenuate in the depth, and have no dispersion. None­
theless, these waves play an important role in nonde­
structive testing of multilayered systems, since, along 
with Lamb and Love waves, they occur in the half­
space contacting with layers.

Starting with paper [46], in which basic equations 
describing the propagation of elastic surface waves in a 
homogeneous isotropic half-space were obtained, in 
all subsequent studies of surface waves it was assumed 
that such a wave consists of three partial waves,

3 3
/ \ ir(Ykv ' x + n ' x - ct) ~чu(x ) = ^  ZkUk(x ) = ^  Zkmke ; ( L 7 )

k = 1 k = 1
here, the notation is the same as for Lamb waves (1.6). 
For existence of the Raleigh wave, it is necessary for all 
comprising surface waves to have the same wave num­
ber and the same phase velocity.

Remark 1.3 . (a) Attenuation in the depth (for 
v • x  < 0) of the Raleigh wave can be achieved if all 
roots Yk in representation ( 1 . 1 ) have a negative imagi­
nary part, below which this condition is assumed to be 
satisfied;

(b) if the real part Re(yk) is nonzero, the corre­
sponding wave is called the generalized Raleigh wave.

It should be noted that, while the polynomial equa­
tion for determination of the velocity of the surface 
wave propagating in an isotropic half-space was 
obtained by Raleigh [46], the analytical expression for 
the velocity determining it as a function of elastic 
parameters and density was obtained not long ago [47, 
48]. Earlier approximate fractional linear formulas 
were used for this purpose [29, 49, 50].

Representation (1.7) was also used in [5, 51] for 
investigation of Raleigh waves propagating in planes 
with elastic symmetry in directions of crystallographic 
axes of cubic and tetragonal crystals. The following 
fundamental result was proved based on these studies: 
the nonexistence of forbidden directions coinciding 
with the directions of crystallographic axes in cubic, 
orthorhombic, and tetragonal crystals for Raleigh 
waves.

Numerical studies of propagation of Raleigh waves 
in crystals of different syngonies were performed in 
[52] based on the 3D complex formalism using repre­
sentation (1.7). In the course of these studies, forbid­
den directions were not found, except for the cases in 
which the Raleigh wave degenerated into the trans­
verse body wave.

In [53] the six-dimensional complex formalism was 
developed for description of displacement of linear 
dislocations in anisotropic media; later, this formalism 
was applied for analysis of propagation of surface 
waves in anisotropic media [54-60]. Corresponding 
analytical and numerical results proved the absence of 
forbidden directions for Raleigh waves of type (1.7). 
Note that in [55] and then [57] the following theorem 
on existence of Raleigh waves was proved: for any 
anisotropy of an elastic medium in any direction of 
propagation there exists either a true Raleigh wave 
attenuating for v • x  < 0 or the corresponding Raleigh 
wave degenerates into the transverse body wave. Thus, 
the problem of forbidden directions, seemingly, was 
unambiguously solved. Nonetheless, it was demon­
strated in [59, 61, 62] that forbidden directions for 
canonical Raleigh waves of type (1.7) exist. Moreover, 
forbidden directions can coincide with the directions 
of crystallographic axes o f cubic crystals. However, in 
these cases a wave of more complex structure attenu­
ating in the depth [61] propagates instead of Raleigh 
wave (1.7). In conclusion it should be noted that, in 
the case of certain types of elastic anisotropy for 
canonical Raleigh waves, not only separate forbidden 
directions, but also forbidden planes, can exist [63]. 
Similar directions and planes can be found for canon­
ical Lamb waves [30].

1.3. Experimental Studies

Acoustic measurements are especially important, 
since they can be used for direct measurement of 
mechanical properties of materials, and the applica­
tion of high frequencies makes it possible to determine
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the properties of thin films and microdefects. Usually 
in acoustic studies used for analysis of material prop­
erties, velocities, frequencies, and polarization of cor­
responding waves are registered. Then, using the com­
parison of obtained experimental data and theoretical 
models, it is possible to determine physical and 
mechanical properties of materials.

In microelectronics microheating of material by a 
point pulsed laser source is often used for acoustic 
studies; in the neighborhood of the heated spot, the 
material experiences practically instantaneous tem­
perature jump. This heated spot serves as the center of 
dilatation and the source of acoustic waves. A  linear 
pulsed N d —Y A G  laser based on Q-transitions is often 
used for this purpose. This method provides creation of 
acoustic waves with quite a small length (—0 . 1 —10  ^m), 
which makes it possible to use these waves for analysis 
of the properties of thin film coatings with a thickness 
of up to 10 nm [9]. Depending on the element geome­
try, laser pulse duration, and hot spot size, both body 
and surface acoustic waves are generated, and the 
application of precision measurement devices (as a 
rule, Fabry—Perot of Michelson interferometers) pro­
vides separation of different types of acoustic waves by 
corresponding displacements at the free boundary [6 — 
8 , 64, 65]. In some cases, for filtering of undesirable 
waves, a system of comb filters is deposited on the sur­
face for cutting-off undesirable modes of surface waves 
[6 6 , 67].

Another method of generation of surface waves is 
action on the free surface of different sources of 
mechanical oscillations. In microelectronics piezo 
elements are especially often used for this purpose [5]. 
In the case of the half-space, this element is usually 
applied to simulate the Lamb problem concerning the 
action of a concentrated source applied to the bound­
ary of the half-space.

1.4. M ethod Developed in this Study

In this study a modified transfer matrix method is 
developed; it is based on the application of hyperbolic 
functions in the representation for partial waves which 
is designated for analytical investigation of Love waves 
in anisotropic media with a small number oflayers (1—3) 
and for numerical analysis of systems containing a 
large number of layers. It will be shown below that rep­
resentation (1.1) turns out to be wrong if the Christof- 
fel equation has multiple roots. The correct represen­
tation and corresponding modification of the transfer 
matrix method will be given below. The transfer matrix 
method will be used for obtaining resolving equations 
for S H  waves with transverse horizontal polarization 
propagating in layered plates with free and fixed 
boundary surfaces. In this case, unlike Love waves, 
plates are not in contact with the half-space.

2. B A S IC  R E L A T I O N S
Hereinafter, layers and the half-space are assumed 

homogeneous and linearly hyperelastic. The motion 
equations for the elastic homogeneous anisotropic 
medium can be written in the form

A ( 3 X ,  d t )u = divxC • • V xu -  pU = 0, (2.1)
where the four-valent elasticity tensor C  is assumed to 
be positive definite,

V A  (A  • • C • • A ) = £  A i j CU m n A m n  >  0.
A e sym(R3 ® R3), A * 0 i, j , m , n

Remark 2 .1. (a) This remark is related to the sym­
metry of the elasticity tensor. It is assumed that all 
considered media possess planes of elastic symmetry 
coinciding with the sagittal plane m • x  =  0. This is 
equivalent to the fact that the elasticity tensor for all 
materials belongs to the monocline system. It can be 
shown [56] that the latter results in vanishing of all 
decomposable components of the elasticity tensor 
with an odd number of occurrences of the vector m (in 
orthogonal basis R 3 formed by the vector m and any 
orthogonal vectors belonging to the sagittal plane). In 
the case of monocline symmetry, the elasticity tensor 
contains 13 independent decomposable components.

(b) It will be shown below that monocline symmetry 
provides the sufficient condition for surface actions on 
any plane v • x  =  const to be collinear to the vector m.

Following [55, 56] we consider a more general than
(1.1) representation for the Love wave,

m f ( irx ') e i r ( n' x - c t ), (2 .2 )
where x' =  v • x , similar to representation ( 1 . 1 ); f  is the 
unknown scalar function; and r  is the wave number. 
The exponential factor in the right-hand part of (2.2) 
corresponds to the propagation of the wave front in the 
direction n with the phase velocity c. Substituting rep­
resentation (2.2) into Eq. (2.1) and taking into 
account Remark 2 .1 , we obtain the following differen­
tial equation:

((m ® v • • C • • v ® m ^
+ (m ® v • C • n ® m + m ® n • C • v ® m)  (2.3)

+ (m ® n • • C • • n ® m -  p c2)) f  ( irx ') = 0.
The characteristic equation for (2.3) known as the 

Christoffel equation has the form

(m ® v • • C • • v ® m)y2

+ (m ® v • C • n ® m + m ® n • C • v ® m)y (2.4)
+ (m ® n • • C • • n ® m -  p c ) = 0.

The left-hand side of Eq. (2.4) represents the second- 
order polynomial with respect to the Christoffel 
parameter y. Thus, for the studied elastic symmetry,
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the Love wave in the layer can consist of two partial 
waves only.

3. D I S P L A C E M E N T S  A N D  S U R F A C E  F O R C E S  
I N  T H E  H A L F - S P A C E

Below it is assumed that the layered medium con­
sists of n layers contacting with the half-space (unless 
the opposite is assumed), the lower index n + 1  being 
related to the half-space. Since the displacement field

in the half-space should attenuate in the depth, the 
corresponding root of Eq . (2.4) should be complex 
with a negative imaginary part; see Rem ark 1.1.

The following proposition is satisfied.
Proposition 3.1. Attenuation in the depth in the 

monocline half-space is possible if and only if the 
phase velocity c belongs to the (nonempty) velocity 
interval

(
c e 0 ;

V
P n + 1 m ® n • • Cn + 1 n ® m _ (m • sym(n • C„ + 1 • v) • m )' 

m ® v • • Cn + 1 • • v ® m)

\

)
(3.1)

where, for an arbitrary second rank tensor, A  : sym(A) = sponding Christoffel parameter y„ + j is complex with 
1/2(A + A (). For velocity interval (3.1), the corre- a negative imaginary part,

Yn +1  = -
m -sym (n-Cn + 1 
m ® v • • c „ +1  • •

• v ) • m 
v ® m

-  i fm <£S> n ■ • C n + 1 • • n ®  m - p n  + 1 c 2 
m ® v • • Cn +1 • • v ® m

m • sym ( n • С, + j • v ) ■ m>2 
m ® v • • C n +1 • • v ® m)

(3.2)

Proof. Direct analysis of the roots of Eq . (2.4) 
shows that these roots are complex in the case of a neg - 
ative discriminant, which yields the upper boundary in 
(3.1). Let us show that the radicand in (3.1) is positive. 
This follows from analysis of the quadratic polynomial

P (x ) = m ® (xv  + n ) • • Cn +1 • • (n + x v) ® m . (3.3)
The right-hand side of (3.3) is positive for any real 

x , since the elasticity tensor is positive definite. The 
absence of real roots of this polynomial completes the 
proof, since the discriminant of this polynomial coin­
cides (to the factor —(pn + x)-1/2  with the upper bound­
ary in (3.1)). It should be noted that expression (3.2) 
was obtained from the solution to Eq . (2.4).

Corollary 1. The parameter y„ + 1 cannot be a mul­
tiple root of Christoffel equation (2.4).

The proof follows from the condition of nonvan­
ishing discriminant of Eq. (3.2) which is necessary for 
attenuation of the wave in the depth.

Corollary 2. I f  the considered material possesses 
another plane of elastic symmetry the normal ofwhich 
coincides with the vector n or v (such a material is nec­
essarily orthotropic), the admissible velocity interval 
has the form

c e ( 0 ; cT
n + 1 ) ,

Twhere cn + 1 is the velocity of the transverse body wave 
propagating in the direction of the vector n with the 
polarization coinciding with the vector m . For the

considered case, the Christoffel parameter y„ + i is 
purely imaginary,

Yn +1  = - i .
m ® n

m
2■'n + 1

>v • • C
n ® m Jn + 1L

+1 • v m

Proof. For such a material, the expression 
(sym(m ® n • • с ,  +1 • • n ® m)) in (3.2) vanishes, since 
this expression contains an odd number of occur­
rences of the vectors n and v . It is sufficient to note that 
the remaining radicand in (3.1) coincides with the
velocity cnT+ 1 . The remaining part of the proof follows 
from the analysis of Eq. (2.4).

Representation (1.1) for the half-space yields the 
following field of surface forces on the plane v • x =  0 :

t n + 1 (x ) lv . x = 0 = irC2n + 1 (Yn + 1 (v • C n + 1 • • v ® m ) (3.4)
+ (v • C n.  1 • • n ® m ) ) -

Proposition 3.2. Surface forces (3.4) are collinear 
to the vector m .

The proof follows from the proposed monocline 
symmetry with respect to the vector m , which provides 
an even number of occurrences of the vector m in the 
decomposable components of the tensor с ,  + j in the 
basis formed by the vectors m , v , n . Thus, the vectors 
(v • Cn + x • • v ® m) and (v • с ,  + x • • n ® m) in the right- 
hand side of (3.4) are collinear to the vector m .
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4. D I S P L A C E M E N T S  A N D  S U R F A C E  F O R C E S  
I N  L A Y E R S

In this section the lower index k  (1 < к  < n) is related 
to the corresponding layer.

4.1. Nonmultiple Roots
For nonmultiple roots of Christoffel equations and 

the orthotropic material with the principal axes of

elasticity coinciding with the vectors m, n, and v, rep­
resentation (1.1) is valid. However, in this analysis, 
which includes a more general class of monocline 
symmetry, representation ( 1 . 1 ) is modified as follows:

% (x ) = m(C2к -  1 sinh ( ir a ^ ' )

+ C2k cosh ( irakX ')) e"(M  c° ,
where Yk =  a k + Pk.

- i

a k  =

mi ® n •• Ck •• n ® m -  pkc2 

m ® v • • C k • • v ® m
m • sym(n • Ck • v)  • m32 

m ® v • • C k • • v ® my

Pk
m • sym (n • C k • v) • m 
m ® v • • C k • • v ® m

(4.2)

Thus, ak is the real or imaginary parameter, 
depending on the value of the phase velocity, and pk is 
real independently of the velocity c.

Taking into account (4 .1), the corresponding 
surface forces on the plane v • x  =  x' have the 
form

tk( x ')

^ ( v  • C k • • v ® m )(akcosh( ir a kx ') + pksinh( ir a kx '))^ 
+ (v • C k • • n ® m) sinh ( ir a kx ')

ir

C2k

3
1

ir(fikx' + n ■ x
e

f(v  • Ck v ® m )(aksinh( ir a kx ') + pkcosh( ir a kx ' ))л 
+ (v • C k • • n ® m) cosh ( ir a kx ') У

C2k
у

c t ) (4.3)

Proposition 4 .1 . Surface forces (4.3) are collinear 
to the vector m.

The proof is similar to the proof o f Proposition 3.2.
Taking into account (4.3) and the fact that v • C k • • 

n ® m =  0 , pk =  0 , and Yk =  ak, for the orthotropic 
material with axes of elastic symmetry coinciding with 
the vectors m, n, and v, we obtain the following expres­
sion for the surface forces:

tk(x') = irYk(v • C k • • v ® m) 
x (C2k-  1 cosh( i r / X ) + C2ksinh( irYkX'))e r(n■x-ct).

4.2. Multiple Roots

Representation (4.1) for Love waves in the layer 
is wrong if multiple roots occur in the Christoffel 
equation [10, 55]. Multiple roots occur if  the 
parameter a k in (4.2) vanishes; this yields the fol­
lowing proposition.

Proposition 4.2. (a) The phase velocity for which 
multiple roots occur is determined by the following 
expression:

c ' p - 1 m ® n • • C k • n ® m - (m • sym(n • C t • v) • m) 
m ® v • • C k • • v ® m (4.4)

(b) The corresponding Christoffel parameter Yk 
(necessarily real) has the form

(c) The representation of the field of displacements 
corresponding to multiple roots has the form

m • sym (n • C k • v) • m 
m ® v • • C k • • v ® m (4.5)

uk(x) = m( C2k 1 + irx' C2k )e
ir(fkx' + n ■ x c t ) (4.6)
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(d) The corresponding surface forces on the plane v • x  =  x' have the form
'( V • C k • • v ® m){ykC2k_ 1 + ( 1  + i r jkx ')C2kА  НУкх' + n ■ x- ct) 

+ (v • Ck • • n ® m)(C 2k- 1  + irx 'C2k) '
tk(x') = ir\ (4.7)

Proof. Conditions (a) and (b) follow from the con­
dition of vanishing of the discriminant in the right- 
hand side of (3.2). Condition (c) corresponds to the 
general solution to Eq . (2.3) in the case of multiple 
roots [10, 30, 62].

Proposition 4.3. Surface forces (4.7) are collinear 
to the vector m.

The proof is similar to the proof of Proposition 3.2.

5. M O D I F I E D  T R A N S F E R  M A T R I X  M E T H O D  
5.1. Transfer Matrices

According to Propositions 4 .1 , 4.2, the scalar 
amplitudes of displacements and surface forces in the

k  th layer on the plane v • x  =  x ' can be represented in 
the form

Uk ( x ')
l  tk ( x ' )

(
Mk( x ') C2k

l  C2k

\

)
(5.1)

where % (x’) = | Uk(x ') e ir(n' x ct)| , tk(x’) =
|tk (x ') e~Ir( n'x - ct)| are the corresponding scalar ampli­
tudes and M k is the 2 x 2 matrix. Taking into account 
expressions (4.1), (4.3), (4.4), and (4.5), the matrix M k 
takes the following form.

5 .1 .1 . Nonmultiple roots

Mk( x ') =

(ir) 1sinh (irakx ')

f  ( a kcosh(irakx ') ^(m ® v • • Ck • • v ® m)
1 + Pk sinh(irakx  ')

V V + (m ® v • • Ck • • n ® m) sinh (irakx ') J 

5.1.2. Multiple roots

(ir) 1cosh (irakx  ')

f  ( a ksinh(irakx ') ^(m ® v • • Ck • • v ® m)
V + pk cosh (irakx ')

+ (m ® v • • Ck • • n ® m) cosh (irakx ') J

■ irekx' <г 0чire . (5.2)

M k(x') =
( ir)- 1

\
x  1

|Yk(m ® v • • Ck • • v ® m)Л |(  1 + irykx ')(m ® v • • C k • • v ® m)\
l l  + (m ® v • • n ® m) ' l  + irx ' (m ® v • • C k • • n ® m) ' )

ire irYkx (5.3)

Note that according to (4.2) the parameter pk in
(5.2) is independent of the phase velocity c. The fol­
lowing proposition is satisfied.

Proposition 5 .1. Independently of multiplicity of 
roots the matrices M k are nondegenerate for any 
real x'.

Proof. Note that the exponential factors e k in
(5.2) and e n k  in (5.3) are nonzero for any x'. Direct 
analysis shows that the matrices in the right-hand sides of
(5.2) , (5.3) are nondegenerate for any x', the determinant
of the matrix in (5.2) is —ak(m ® n • • Ck • • n ® m) e " ^ '  
and a k Ф 0, since the roots are nonmultiple. In the case

of matrix (5.3) the corresponding determinant is
(m ® v • • Ck • • v ® m)e n k  .

Then using the matrices M k, the displacements, 
and the surface forces at the interface between the 
n th layer and the half-space can be represented in 
terms of the coefficients C1 and C2 only,

Un ( - h n / 2 ) Л

l  tn ( - h n / 2 ) ) (5.4)

= I П  ( Mk(-hk/2 ) • M k: (hk/2) ) M 1( - h , / 2)
k = 2

C - 1

C 2 )
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where hk, k  =  1 , n are the thicknesses of the corre­
sponding layers.

5.2. Boundary Conditions at the External Boundary
Expressions (4.3), (4.7) yield the conditions of 

absence of tangent stresses at the external boundary for 
the first layer,

t1 (h 1 / 2  ) = Bi (h 1 / 2 ) • C = 0 ,

where t1 is corresponding scalar amplitude;

Bi (hi/2 ) =  (Xj(hi/2 ); Yj(hi/2 )), and C =  ( Q ;  C2).
The components X 1 (h1/2) and Y 1 (h1/2) have the fol­
lowing form.

5.2.1. Nonmultiple roots

X  (h j / 2 ) 

Yj( h j / 2 )

' ( m ® v • • C 1 • • v ® m) ( a 1 cosh( i r a 1h 1 / 2 ) + p 1 sinh( i r a 1 h 1/ 2 ) ) л
V + ( m ® v • • C 1 • • n ® m) sinh ( i r a 1h 1 / 2 ) )

^(m ® v • • C 1 • • v ® m) ( a  1 sinh( i r a 1h 1 / 2 ) + p 1 cosh( i r a 1h 1 / 2 ) ) л

V + ( m ® v • • C 1 • • n ® m) cosh ( i r a 1h 1 / 2 ) )

.  irp1*1/2
ire

. 1г̂ 1*1/2 ire

(5.5)

5.2.2. Multiple roots
X 1 (h 1 / 2) = (y1 (m ® v • • C 1 • • v ® m)

+ (m ® v • • C 1 • • n ® m) ) ir e rhhin , (5  ^)
Y 1 (h 1 /2) = ((1 + iry1h 1 / 2)(m ® v • • C 1 • • v ® m)

+ irh 1 /2(m ® v • • C 1 • • n ® m) ) i r e nlhl/1.

Equations (5.1) make it possible to express (to a 
factor) the coefficients C 1 and C2 in the form of solu­
tion to the following equation:

T 1 (h 1 / 2 ) x C = 0 , (5.7)
where

T 1 ( A 1/ 2 ) = ( - Y 1 ( h , / 2); X 1 ( A 1/ 2 )). (5.8)
It can be seen from (5.7) that the two-dimensional 
vector T 1 (h1 /2 ) is collinear to the vector C .

5.3. Boundary Conditions 
at the Interface n th Layer-H alf-space

The contact conditions at the corresponding inter­
face can be represented in the form

V n(-hn/ 2) x Wn + 1 ( 0) = 0, (5.9)
where

Vn ( - h n / 2) = ( u n ( - h n /2), tn ( - h n / 2 )), (5.10)

W n  +1 (0 ) = (- t n +1 (0 ), un +1 ( 0 )). (5.11)

In (5.11) tn + 1(0) =  |tn +1 ( 0)e ,H "n x ct) , and the vector 
tn + 1 (0) is determined according to (3.4). Taking into 
account (5.10), (5.11), it can be seen that Eq. (5.9)

expresses the collinearity of the vectors Vn and 
(un + 1(0 ), tn + 1 (0 )), which is equivalent to the condi­
tion of collinearity of displacements and forces upon 
passing over the interface of components. In (5.11) it 
is assumed that, in the local coordinate system for the 
half-space, the interface plane is determined by the 
equation v • x  =  0 .

5.4. Resolving Equation fo r  Love Waves

Taking into account Eqs. (5.4), (5.7), (5.9), and 
(5.11), the united equation of modified transfer matrix 
method can be represented in the form

Wn +1 (0 )•
n Л

П  M k(- h k/ 2 ) • M k1 (hk/2 )
k = 2 )

\
x M 1 (- h 1/ 2)

)
• T 1 ( h x/ 2 )  =  0 .

(5.12)

Equation (5.12) represents the sought resolving equa­
tion for Love waves.

5.5. Resolving Equation fo r  Horizontally Polarized 
Shear Waves in Layered Plates

In this section the resolving equation for the 
horizontally polarized shear waves propagating in 
the layered plate consisting o f n layers (n > 1 ) will 
be obtained. The external surfaces o f the plate are 
assumed to be free from surface forces, or fixed, or 
possess mixed boundary conditions (one o f the 
surfaces is free from forces, and the other one is 
fixed).
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5 .5 .1. Layered plate with free external boundary 
plates. For such a plate, the corresponding boundary 
conditions have the form

j t 1(h 1 /2) = v -  C 1 • Vu = 0,
11„ ( - h n/2 ) = v  Cn •V  u = 0.

(5.13)

Similarly to Section 5.4, the application of the 
modified transfer matrix method provides the resolv­
ing equation in the form

1
T n ( - h j 2 ) x Mn1 (hn/ 2 )

/ n -  1 S
x I П  M k(-h n /2) X M k1 (h k /2 )

St = 2 '

X M 1 (- h 1 /2) X T 1 (h 1/2) = 0,

(5.14)

where the 2 D  vectors T 1 and Tn corresponding to 
boundary conditions (5.13) have the form

T 1 ( К / 2 ) = (-7 1  (h j  2 ); A (  h x/ 2 )) ,

Tn( -hn/2 ) = (Xn (-hn/2 ); 7n( - h n / 2 )).

In (5.15) the components Xk, Yk, K  =  1, n, are deter­
mined using (5.5), (5.6).

5.5.2. Layered plate with fixed boundary surfaces. For
such a plate, the boundary conditions have the form

j  u1 (h 1/ 2 ) = 0 ,
j  un (-hn/2 ) = 0 .

The application of the modified transfer matrix 
method yields the following resolving equation:

1
D n(-hn /2 ) x Mn (h n/ 2 )

X n -  1 '2

x I П M k(- К / 2 ) x  M ^ ( К / 2 )
1  k = 2 '

x M 1( - h 1 / 2) x D 1(h1/2) = 0,

(5.16)

where the vectors D 1 (hx/2 ), Dn (—hn/ 2 ) can be repre­
sented in the form

D 1 (h1 / 2 ) = ( - A (  K / 2 ); S  ( h j  2 )) ,

Dn (-hn/2 ) = ( Sn( - h 1 / 2 ); Un( -h n /2 )).
In (5.17) the components Sk, Uk, k  =  1, n, for the case 
of nonmultiple roots, according to (4.1), have the form

S k  (±h k / 2 ) = ± sinh ( ir a k h k / 2 ),

Uk (±hk/2 ) = cosh ( irakhk/ 2 ) , 
where the parameter a k is determined by (4.2).

The components Sk , Uk, k  =  1 , n , for the case of 
multiple roots, according to (4.6), have the form

S k  (±h k / 2 ) = 1 ,

Uk(±hk/2 ) = ±irh k / 2 .

5.5.3. Layered plate with one fixed and one free sur­
face. For such a plate, the boundary conditions have 
the form

|t ( h j  2 ) = 0 ,
[un (-hn/2 ) = 0 .

(5.18)

In (5.18) it is assumed that the upper boundary plane 
is free and the lower is fixed. For these boundary con­
ditions, the resolving equation has the form

1
Dn (- h n/ 2 ) x Mn1 (h n/ 2 )
 ̂n -  1
П  M k(- h n/ 2 ) x M k1 (hk/2 ) (5.19)
k = 2

x M 1 (- h 1/2) x T 1 (h1/ 2) = 0.
The modification of Eq. (5.19) for the case in which the 
upper surface is fixed and the lower is free is obvious.

Remark 5 .1. The left-hand sides of Eqs. (5.12), 
(5.14), (5.16), and (5.19) can be considered as implicit 
equations with respect to the wave number r  for fixed 
phase frequency ю and vice versa. Using the relation

юr  = -
c

in these equations, the dispersion equation expressing 
the dependence of the phase frequency on the phase 
velocity can be obtained (generally speaking, this 
equation is implicit).

x

6 . S O M E  A N A L Y T I C A L  S O L U T I O N S
6.1. One Orthotropic Layer  

on an Orthotropic Half-Space
Let the vectors v, n, and m coincide with the prin­

cipal axes of elasticity of the layer and the half-space. 
In this case the Christoffel parameters yk take the form

, . ..k + к m  ® n • • C k • • n ® m -  pkc2

Y‘  = ( - 1  > V  m ® v . • C t . . v < 8 m , (6 . 1 )
k  = 1 , 2 .

In (6.1) and below in this section, the index 1 denotes 
the layer and the index 2  denotes the half-space.

Remark 6.1. (a) Expression (6.1) shows that multi­
ple roots for the characteristic equation in the layer can 
occur only if the phase velocity coincides with the 
velocity of the transverse body wave polarized in the 
direction of the vector m propagating in the direction n.

(b) In spite of the fact that some analytical results 
for the orthotropic layer on the orthotropic half-space
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were obtained in [5], the corresponding explicit dis­
persion equation was not obtained.

The scalar amplitude of surface forces t1(x') =
|tj(x ')e~ir(n ' x -ct)| on the plane v • x  =  x' in the layer has 
the following form.

6 .1 .1 . Nonmultiple roots
t 1 (x ') = try, (m ® v • • C , • • v ® m)

(6 .2 )
x (Cjcosh( i r j i x ') + C2sinh( try , x ') ) .

6 .1.2. Multiple roots (y1 =  0)
t 1 = ir(m ® v • • C  • • v ® m)C 2 . (6.3)

The scalar amplitude of surface forces t2(0) =
|t2 (0 ) e~ir(n  ’ x  - ct)| on the plane v • x  =  0 in the half­
space has the form

t2( 0) |v. x  = о = i r h x (m ® v • • C 2 • • v ® m)C 3 .  (6.4)
Proposition 6.1. There do not exist Love waves 

propagating in an orthotropic layer on an orthotropic

half-space if the Christoffel equation for the layer has 
multiple roots.

Proof. Expressions (4.4) and (6.1) show that the 
multiple root y 1 is necessarily zero. In this case condi­
tion of absence of surface forces (5.6) and (5.7) 
together with expression (6.3) yields

C2 =  0. (6.5)
Interface conditions (5.9) together with (6.3)—(6.5) 
provide

C3 =  0. (6 .6)
Condition (6 .6 ) provides the absence of displacements 
on the interface plane and results in the following:

C1 =  0. (6.7)
Conditions (6.5)—(6.7) complete the proof.

Eliminating multiple roots we consider the case of 
nonmultiple roots. The application of (5.2) to the 
orthotropic layer yields

M i (x ')

f sinh ( i r f 1 x ' )
\

cosh ( i r Y1 x ' )

V i r Y1 ( m ® v • • C 1 • • v ® m) cosh ( irY1x ) i r Y1 ( m ® v • • C 1 • • v ® m) sinh ( i r Y1 x ' ) J

(6 .8)

The vector T 1 determined using (5.8) to the scalar factor 
iry1(m • v • • C , • • v ® m) can be represented in the form

T i(h 1/ 2) = ( - sinh( iry1h 1 / 2); cosh( iry ,h 1/ 2 )). (6.9)

Similarly, the vector W 2 determined using (5.11) has 
the form

W 2 = (-iry 2m ® v • • C 2 • • v ® m; 1). (6.10)
Substituting (6 .8 )—(6.10) into Eq. (5.12) after some 
transformations yields

ю = - c- f arctanf i —'l + л я ), n = 0 , 1 , 2 , . . . ,  (6 . 1 1 )
Y1 h V V Ch J

where Zk =  Yk(m ® v • • Ck • • v ® m), k  =  1 , 2 .
Proposition 6.2. (a) In the considered case Love 

waves can propagate only if  the phase velocity
T Tbelongs to the interval c e ( c1 ; c2 ) (for this velocity 

interval all roots o f Christoffel equation are non­
multiple), where

t _  /m ® n • • C k • • n ® m u _  1 0
ck = , k  = 1 , 2 ,

V Pk
are the velocities of the corresponding shear body 
waves with the polarization vector m.

(b) For the fixed frequency ю, there exist not more 
than a finite number of Love waves propagating with

T Tdifferent phase velocities c e ( c1 ; c2).
(c) For fixed velocity c e ( c \ ; c \ ), there exists a 

countable set of Love waves propagating with different 
frequencies ю.

T TProof. (a) Let us assume that c1 < c2 ; then the cor­
responding velocity range is nonempty. Analysis of 
expression (6 . 1 1 ) shows that, for the phase velocity in
the interval ( c1 ; c2 ), the Christoffel parameter y1 

determined using (6 . 1 ) is real and negative, while y2 
determined using (6 .2 ) is imaginary with a negative 
imaginary part. Substituting yk, k  =  1, 2 into (6.11) we 
obtain the positive values of the phase velocity ю. 

TAssuming that c < c1 , we obtain

ю c
Iy 1  h 1

tanh-1 Z 2

Z 1
(6 . 1 1 ')

It follows from (6.11') that, in this velocity range, the 
right-hand side of frequency (6 . 1 1 ') is negative, which 
is impossible. The other statements directly follow 
from (6 . 1 1 ).

Corollary. In the considered case there do not exist 
Love waves if c f  > c 'T .
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6.2. Two Orthotropic Layers on Orthotropic Half-Space  
(Nonmultiple Roots)

Using the notation introduced above, we obtain the 
following expression for the product of transfer matrices:

M 2( -h 2/2) • M -'(h 2/ 2 ) • M j ( - h f  2 )

С34C34II

(  a21 a22
where

a 11 = - i ( cos(Z2) sin( 1

(6 . 1 2 )

Zi

1  Z )  Z i.
a 12 = cos (Z 2) cos ( 2 ZlJ -  ^ sin(Z2) sinQ  Zi) >

a 21 = - ir Z 2( sin(Z2) sin( 2 Zl) -  Z-1 cos(Z2) cos( 2 ^ ) )  ’

a 22 = rZ 2( sin (Z 2) cos l -  Z 2 j + |Z-cos ( Z 2) sinl -  Z 1 j j >Z 1 1

(6.13)

Proposition 6.3. There do not exist Love waves in 
the system formed by two orthotropic half-spaces and 
the orthotropic layer between them if a multiple root in 
Christoffel equation for the layer occurs.

Eliminating multiple roots we consider the case of 
nonmultiple roots in the Christoffel equation for the 
layer. The assumption that in both half-spaces the 
wave attenuates in the depth results in seeking the 
solution for phase velocities satisfying the inequality

c < min(c1; c3), (6.15)

where c1 , c3 denote the velocities of horizontally 
polarized transverse body waves propagating in the 
corresponding half-spaces in the direction of the vec­
tor n. Condition (6.15) provides nonzero imaginary 
parts o f the Christoffel parameters y1, y3.

Remark 6.2. Attenuation in the depth in the 
“upper” half-space (x' ^  +да) is provided by the 
choice of y1 with a positive imaginary part.

Transferring to the limit h1 ^  да in Eq. (6.14) and 
taking into account Remark 6.2, we obtain the sought 
dispersion relation in the form

Z k = rYkhk,

Zk = Yk(m ® v • • Ck • • v ® m ), k  = 1 , 2 , 3.
In (6.13) the indices 1 and 2 denote the layers and the 
index 3 denotes the half-space.

Expressions (6.9) and (6.10) for the vectors T 1 and
W 3 are the same but with obvious change of indices. 
Substituting (6.12), (6.13) into Eq. (5.12) yields the 
resolving equation in the form

sinZ2( cosZ1 + i ^^-j-sinZ1

Z2

■cosZ2( iZ~cosZ1 -  j 1 sinZ1) = 0 .
(6.14)

Unlike the previous case, Eq. (6.14), generally speak­
ing, cannot be resolved with respect to the phase fre­
quency ю.

6.3. Two Orthotropic H alf-Spaces 
with an Orthotropic L ayer between Them

Taking into account Corollary 1 of Proposition 3 .1,
the case resulting in multiple roots for half-spaces 
should be eliminated from consideration. A t  the same 
time, according to Remark 6.1 (a) multiple roots in 
Christoffel equation for the orthotropic layer occur 
only if  the phase velocity coincides with the velocity of 
the transverse body wave and the corresponding 
Christoffel parameter y2 becomes zero. Then using 
arguments similar to those used for proving Proposi­
tion 6 . 1  we obtain the following statement.

ю _c_ (  arctan ( i ̂ & - Щ  + n „
Y2h2(  (  Z2 -  C1C3 )  '

n = m, m + 1 , m + 2 , __

(6.16)

The parameter m  in the right-hand side of (6.16) pro­
vides positiveness of the frequencies ю. Below this 
parameter will be determined explicitly. Obviously for 
Z 1 =  0 (vacuum) dispersion relation (6.16) is trans­
formed into relation (6 . 1 1 ).

Proposition 6.4. (a) In the considered system, the 
Love wave can propagate only if the phase velocity 
belongs to the interval

c e (c [ ;  min(cT c [ )). (6.17)
(b) For the fixed frequency ю there exist not more 

than a finite number of Love waves propagating with 
different velocities from interval (6.17).

(c) For the fixed phase velocity from interval (6.17) 
(under the condition that this interval is nonempty) 
there exists a countable number of Love waves propa­
gating with different frequencies ю.

Proof. (a) I f  c > m in(c 1 , c 3 ), the Love wave can­
not propagate since the attenuation condition in the 
half-spaces is not satisfied. Let us assume that c <
min( c f ; c T ; c[ ) , then all parameters Yk turn out to 
be imaginary,

Y1 = +  i | Y1 I ,  Y2 = ± i | Y2I ,  Y3 = - i | Y3 .  (6.18)
Remark 6.2 was taken into account for choosing 

the signs in (6.18). Substituting (6.18) into (6.16) 
yields
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ю _ £ _ ta n h -1 ( Ш - к + Ш
Iy J * 2  v |z j 2+ \ ц \ ц -

(6.19)

In this case the right-hand side of (6.19) is negative, 
which is impossible.

Then let us show that, for the phase velocity from 
interval (6.17), the corresponding frequency ю is pos­
itive. For this velocity interval, we have

Y i = + {\Y1 , Y 2 = ±|Y 2 , Y з = -  i \Y 3 • (6.20)
Substituting (6.20) into (6.16) we obtain

The parameter values correspond to a temperature of 
20°C.

Figure 1 shows the dispersion curves for the consid­
ered multilayered material.

Figure 2 shows the plots characterizing the change 
of the lower dispersion branch A (as the most conve­
nient in experimental studies) with increasing thick­
ness of the k  th layer by 1 0 % (the other layer parame­
ters remain unchanged),

A  = + 10 % h -  D  0ef. (7.4)

ю c (  arctan (  Ш У + И ,  + „ n
W  % f  q y 2 - % ,\% з

n = m, m + 1 , m + 2 , . . . ,
(6.16')

where the integer parameter m in the right-hand side 
of (6.16') is determined from the condition

m = -  Ent _1 arctan f  I ^ K ^ 3! + - ^ - Т ) . (6.21)

Condition (6.21) provides positiveness of ю, where 
En t(...) denotes the integer part.

The proof of propositions (b) and (c) follows from 
(6.16').

Corollary. The Love wave cannot propagate if 
c2 > min(c  1 , c3).

Remark 6.3. The results obtained in this section can 
serve as the explanation of occurrence of the high fre­
quency waveguide for waves with transverse horizontal 
polarization propagating in the system consisting of the 
orthotropic layer between the orthotropic half-spaces.

7. N U M E R I C A L  R E S U L T S  
7.1. Love Waves in Multilayered Media

7 .1 .1 . Love waves in ten-layered medium. For analy­
sis of propagation of waves in media containing a large 
number of layers, a numerical algorithm based on the 
modified transfer matrix method was developed; it uses 
high-precision arithmetics (mantissa > 60 decimal dig­
its). This allowed an investigation of propagation of 
Love waves in the medium consisting of ten alternating 
elastically isotropic SiC and Si3N 4 nanolayers with a 
thickness o f 10  nm each, which are at rest on the trans­
versally isotropic silicon monocrystal.

Below we present the physical and mechanical prop­
erties of studied materials necessary for calculations,

(a) silicon monocrystal (Si), orientation 100,
C 1212 =  79.913 G P a, p = 2339.9 kg/m3; (7.1)

(b) silicon carbide (SiC),
C 1212 =  122.80 G P a, p = 3100 kg/m3; (7.2)

(c) silicon nitride (Si3N 4),
C 1212 =  61.447 G P a, p = 3290 kg/m3. (7.3)

refIn (7.4) D 0 is the lower branch of the dispersion
curves for the original configuration and D k0 + 10 %h is 
the same branch with the thickness of the k  th layer 
increased by 1 0 %; in this case the layer enumeration 
begins with the upper layer.

Figure 3 shows similar dependences constructed 
for the shear modulus and density of the k  th layer 
increased by 1 0 % (simultaneous proportional change 
of these characteristics does not change the velocity of 
the corresponding transverse body wave).

The dependences shown in Figs. 2 and 3 show that 
the lower branch of the dispersion curves is informa­
tive and demonstrates the change of geometry of any 
of the deep layers and the change of their physical and 
chemical properties.

7 .1 .2 . Love Waves in Two-Layered Composite. The
study of a two-layered composite containing two layers 
with a thickness of 1 0  and 1 nm, respectively, in con­
tact with the transversally isotropic half-space was 
more difficult from the technical point of view. 
The half-space and the layers possessed physical and 
mechanical characteristics determined by expres­
sions (7 .1)—(7.3).

Figure 4 shows the corresponding dispersion curves 
for the considered composite. It should be noted that 
the constructed dependences in the range above 4— 
5 T H z  are mainly of academic interest, since, as was

Phase frequency, T H z

Fig. 1. Dispersion curves for Love waves propagating in the 
ten-layered plate in contact with the half-space.
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Phase frequency difference, G H z

Phase speed, km/s

Fig. 2. Change of lower branch of dispersion curve for 10% 
variation of thickness of the (1 ) seventh, (2) ninth, and 
(3) tenth layers.

Frequency, T H z

Fig. 4. Dispersion curves for a two-layered nanocomposite 
in contact with the half-space; the external layer has 
a thickness of 10 nm, internal layer, 1 nm.

noted above, in crystalline media waves with frequen­
cies higher than 4—5 T H z  are impossible.

Figure 5 shows the dispersion curves for a similar 
composite with 1 -nm upper and 1 0 -nm lower layers.

Figure 6 shows the lower branches of dispersion 
curves for the composite considered in the first exam­
ple (external 1 0 -nm and internal 1 -nm layers) for 
varying thickness of the internal layer.

These data demonstrate that Love waves are infor­
mative and provide investigation of the change of 
geometry of the internal nanolayer using correspond­
ing dispersion curves. Similar data are available for the 
variation of elastic properties of the internal layer.

Phase frequency difference, G H z

Fig. 3. Change of lower branch of dispersion curve for 10% 
variation of the shear modulus and density of the (1 ) sev­
enth, (2) ninth, and (3) tenth layers and (4) the half-space.

Frequency, T H z

Fig. 5. Dispersion curves for a two-layered nanocomposite 
in contact with the half-space; the external layer has 
a thickness of 1 nm, internal layer, 10 nm.

7.2. S H  Waves in Multilayered M edia
The multilayered plate with free surfaces consisting 

of 31 isotropic layers with the following properties is 
considered:

E 2 n+1  1 , p 2 n + 1 1 , h 2 n + 1 1 ,
E 2n = 4, p 2n 1 _ 1 , h 2 n = 1 •

The method of high accuracy calculations was used for 
solution of this problem (calculations were performed 
with numbers that had more than 10 0 0  decimal digits). 
Figure 7 shows the first 25 dispersion curves for 
S H  waves propagating in this plate.

In this figure two facts should be pointed out: the 
occurrence of the lower dispersion curve correspond­
ing to S H  waves propagating with frequencies close to
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Frequency, G H z

Fig. 6. Lower branches of dispersion curves for varying 
thickness of the internal layer.

Frequency, H z

Fig. 7. First 25 dispersion curves for a 31-layered plate.

Frequency

Fig. 8. Change of lower branch of dispersion curves for 
a 31-layer plate for varying thickness of the middle layer.

zero and unlimited range of phase velocities (unlike 
Love waves whose velocities are limited).

It is interesting to note that, even for such a large 
number of layers, the lower dispersion curve turns out 
to be informative. For example, change of thickness of 
the middle layer by 1 0 % results in noticeable change of 
the lower branch (see Fig. 8 ).

In  conclusion, it should be noted that the boundary 
acoustic waves widely used in acoustoelectronics [6 8 ] 
are applied not only for diagnostics of layered compos­
ites, but in many other diagnostic problems as well. 
These problems have more than once been discussed 
in Acoustical Physics (see, e.g., [69—79]).
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