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A b s t r a c t — T h e  t r a v e l l i n g  w a v e  s o l u t i o n s  t o  t h e  n o n l i n e a r  p a r t i a l  d i f f e r e n t i a l  e q u a t i o n  o f  6 t h  o r d e r  a r e  

o b t a i n e d  f o r  a  s o l i d  h a v i n g  t w o  d i f f e r e n t  s p a t i a l  s c a l e s  i n t r o d u c e d  i n  t h e  m i c r o s t r u c t u r e .  T h e  s l a v i n g  p r i n c i p l e  

m e t h o d  i s  a p p l i e d ,  a n d  t h e  e x a c t  e x p l i c i t  s o l u t i o n  i s  f o u n d  i n  t e r m s  o f  t h e  d o u b l y  p e r i o d i c  W e i e r s t r a s s  e l l i p t i c  

f u n c t i o n  f o r  t h e  c o r r e s p o n d i n g  O D E .  S e v e r a l  p a r t i c u l a r  c a s e s  a r e  d i s c u s s e d  f o r  v a r i o u s  p a r a m e t e r  v a l u e s ,  e . g . ,  

t h e  s o l i t a r y  “ m e x i c a n  h a t ”  p u l s e  i s  f o u n d  w i t h  p o l a r i t y ,  d e p e n d i n g  o n  m i c r o s t r u c t u r e  p a r a m e t e r s .

D O I :  1 0 . 1 1 3 4 / S 1 0 6 3 7 7 1 0 1 0 0 6 0 1 1 4

1. I N T R O D U C T I O N
Recently a considerable attention has been paid to 

the materials which exhibit a compound structure 
often called as “ complex materials.” The term has dif­
ferent meanings, referring to the theory of complexity, 
but in our context it means materials characterized by 
intrinsic spacial scales in the matter, such as the lattice 
period, the size of a crystalline or a grain, the distance 
between microcracks etc. In other words, all properties 
typical for materials used in modern technology, as for 
polycrystalline solids, ceramic composites, alloys, gran­
ular materials, may be described in corresponding spa- 
cial scales. Since 70-es the general theories introduced 
by Mindlin [ 1 ] , Capriz [2], and Eringen [3] are widely 
used to underline an essence of dispersive effects due to 
the scale dependence in various physical models ofwave 
propagation. However, as a rule the governing nonlinear 
equations contain spacial parameters, become quite 
awkward for analytical treatment and, consequently, 
require numerical simulations. Fo r this reason any 
exact solution is expected to be of original interest.

The renewed attention nowadays to modeling of 
materials with different intrinsic spatial parameters is 
caused by nanotechnology. Fo r example, dielectric 
materials supplied with nanoinclusions may become 
conductive due to enormously high surface-volume 
ratio of nanoparticles, 2—5% of nanofilaments may 
increase the stiffness of composites in times, etc.

Experiments in acoustical and mechanical behav­
iour of nanostructures in  situ  are still rare and very 
complicated, that calls for an importance of simula­
tion of elastic features and deformation dynamics. 
Often the averaging parameters of micro- and nano­
composites are sufficient for detailed description of

1 The article is published in the original.

external impacts and wave propagation, see, e.g., [4, 
5], and any direct relation between the wave parame­
ters and elastic constants in micro- and nanoscale is of 
substantial interest.

We consider a microstructured model of a material 
and reduce the wave propagation problem in the com­
plex material to the integration of the 6 th order non­
linear partial differential equations ( P D E ) . It is worth 
to note that many attempts were made to study various 
physical problems governed by the higher order non­
linear equations, and, since the gravity-capillary water 
waves modeling, the 5th order Korteweg—de Vries 
(KdV) equation remains among the most popular for 
description of a chain of coupled nonlinear oscillators, 
magneto-sound wave propagation in plasma etc. In 
fact, this equation is an evolutionary (unidirectional) 
version of the corresponding 6th order nonlinear quasi 
hyperbolic (bidirectional) equation, similar to the cor­
respondence between the K d V  and the Boussinesque 
equations. To name only a few, we mention the solitary 
wave solution of the 5th order K d V  equation, obtained 
in numerical simulation for shallow water waves, that 
was found by a series solution in exponentials in [6 ]. 
Later in [7] that equation was integrated numerically 
under periodic initial and boundary conditions, while 
the homotopy analysis was applied to obtain the soli- 
ton solution to the same problem in [8].

In this paper we deal with a microstructured model, 
having two different spatial scale levels, e.g., the 
micro- and the nanoscale. We refer to the model 
developed in [9, 10], and in Section 2 the field equa­
tions will be obtained as the Euler—Lagrange equa­
tions of a suitable Lagrangean, as shown already in 
[10], assuming the absence of dissipation. A  particular 
choice of the strain energy function, similar to that 
one used in the case of the only microstructure, will
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allow us to deal with the explicit field equations. The 
usage of the slaving principle and the introduction of a 
phase variable both provide a reduction of the coupled 
governing equations to the one leading P D E ,  and to 
the 6 th order O D E , resp. In Section 3 this O D E  is 
reduced to the 4th order O D E , and, following an idea 
from [17], we find some exact solutions in terms of the 
Weierstrass elliptic function, that may be animated 
using M athematica™ .

Finally, in appropriate limiting cases we obtain, 
upon some additional relationships for the coeffi­
cients, the solitary pulse solutions, having typical 
“ Mexican hat” shape. In Section 4 the physics of the 
results obtained above, of the parameter relations, and 
of the restrictions required is discussed.

2. S T A T E M E N T  O F  T H E  P R O B L E M

sipation, then the field equations will take the follow­
ing form, as shown in [ 1 0 ]:

where v  is the displacement field, the subscripts 
denote derivatives with respect to time t, or to the spa­
tial coordinate x , respectively.

A  particular choice of the strain energy function W  
defines different nonlinear models, see [ 1 0 ]; in this 
paper we consider it in the following form:

We consider an one-dimensional ( 1 + 1 D )  micro­
structured model with two different scale levels applied 
for the microstructure. Instead of the two-scale elastic 
system, containing both macro- and microstructures, 
we introduce a material, which is supposed to be a com­
pound of an elastic macrostructure, a first level micro­
structure and a second level microstructure at much 
smaller scale. The last may be interpreted as a nano­
structure, up to some extent (see [1 0 , 1 2 ]).

Therefore, following the model, we deal with three 
different scalar functions: the one for the macrostruc­
ture and two for the microstructures, one for each scale 
level. The model of a material is the one-dimensional 
manifold, and we consider the material coordinates in 
space x  and in time t; and the functions v  =  v(x, t) for 
the macrostructure, ф =  ф(х, t) and у  =  y (x , t), respec­
tively, for the first and the second scale level in micros­
cale. The macrosolids is supposed to be purely elastic, 
and both the first and second level microstructures sat­
isfy the same generalized elasticity hypothesis as well, 
therefore the existence of an internal strain energy is 
assumed.

In general, the strain energy function in elastic sol­
ids with microstructures is assumed to be a function of 
the vector fields and their gradients [13]. Because of 
objectivity, we can write this function as a function of 
the scalar components only, namely,

W  = W (v, vx, ф, ф  ̂ у ,  у x, x ), 
the kinetic energy K  is a quadratic form in v t, ф(, y t:

K  = 1  (p v 2 + Л ф2 + W ) ,

where p is the one-dimensional mass density and 
remains equal to the constant density in the reference 
configuration, because we deal with the Lagrangian 
formulation, and the body is supposed to be homoge­
neous. The terms I 1 and I 2 are the inertia terms con­
nected with the two different microstructure’s scale 
levels. Moreover, we consider the models without dis­

W  = 1  a  v  ̂+ -  p  v 3 -  A 1ф  vx + 1  Бф 2 

+ 1 C  ф 2 -  A 2ф xУ  + 1 В 2У 2 + 1 С 2У 2 .
(2 )

This function is the generalization of the strain energy 
function for nonlinear elastic solids with one micro­
structure level to our case, where the introduction of

3the cubic term vx represents the nonlinear behavior of 
the elastic matrix. The term appears in the framework 
of the so-called 5-constant or Murnaghan non-linear 
elasticity theory, widely used nowadays to take into 
consideration the nonlinearity of (macro)material, 
see, e.g., [7, 12, 17, 18]. The next terms in vx can be 
added also to provide further, however, smaller correc­
tions into macromodel of nonlinearly elastic solids. 
Elastic moduli data in the (next order) 9-constant 
nonlinear elasticity are still rare and often invalid.

The field equations from (1) can be written as:

P v tt = a  vxx + ( P  v2 )  x -  A 1 ф x, (3)
I 1 ф « = C 1 Ф xx + A 1 vx -  Б 1 ф  -  A 2y x’ (4)

I 2y tt = C2y xx + A 2ф x -  B 2У , (5)
where a , p  and A i, B i, Ci (i =  1, 2) denote material con­
stants.

To obtain the governing equation in dimensionless 
form, it is necessary to introduce some parameters and 
constants, as follows:

C  = C* l2i, I 1 = p  l2i I f ,  A 1 = I1 A *  (6)
for the first level of microstructure, and:

C2 = C* l2, I 2 = p  i l l* , A 2 = lA *  (7)
for the second scale level. The values l1 and l2 represent 
the size of the microstructural elements. Then we 
introduce two different parameters d i, i =  1 , 2  charac­
terizing the ratio between the microstructure, and the
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Macrostructure 1 level of microstructure 2 level of microstructure

Fig. 1. A  model with two levels of microstructure, e.g., micro- and nanolevels.

wave length L ,  and e; accounting for small but finite 
elastic strain magnitude:

81  = ( L ) 2, 82 = ( L ) 2, e = V0 ^  1 , (8 )

The resulting equation can be written as:
u TT + a 1uXX + a 2(u )XX + ( a 3Uxx + a 4u TT)XX ( ^ )

+ (a 5 u4X + a 6UTTXX + a 7U4T)XX = 0 ,
where the following notation was introduced:

where v0 the intensity of the initial excitation. Intro-
1ducing the macrostrain v =  vx, the dimensionless 

variables

u = -У-, X  = x , T  = - 01 v 0 L  L

and substituting the parameters (6 ), (7 ) and (8 ) into 
the previous system, we obtain the following coupled 
dimensionless equations:

a B 1 -  A *  lx spa 1 = ------------:— ; a 2 = — - - '
B 1 Pc 0 2P c0

a = A  1* 2 l- ( 8 1 C ** B 2 -  82A * ) ; a = A f f a i r .
a 3 = 2 ; a 4 = 2 ;

B 1 p c0 в ]

2 2

a 5
A *  2 l2

=  - r V l  (8 1 C * 2 B 3 -  281 8 2A 2* 2B 3C *
B 1B 2 p c0

-  82B 1B 2a * 2C * -  82B 1A * 4);

a
UTT = --- 2 uxx +p c 20

В e  (  2)  A * I 1
uxx + — 2 (  u )  XX------- ,  9 XX2

p c 0

A *  I 1 V0 A *  Т б !
Ф  = -̂ 7— ' u -  - 21 --—2 V x  

B 1 B 1

+ 8  [ C * Ф x x -  P i * с 0ф тт]  

B 1

e  p  c 0

(9)

a 6 = А Й 
B  b 2

x  ( -  2 8 ^ * B 2i *  +  8 182A * 2B 2I* +  8 2B 1A * 1 i * ) ;

a 7 = P C0A2 * 2 

3
B 1

1* 3
-  8 1 ;

A *  8 2 8 2 2
V  = —-7— Ф x + [  C * V xx -  P  f co  V tt ]  •

The slaving principle [12] can now be used for fur­
ther transformations. This procedure allows us to write 
one function in terms of the other; on this way we can 
obtain the governing equation for the function u(x, t) 
only. To this end, we determine the variable v  in terms 
of ф  and its derivatives from (9)3 . Then the Eq . (9)3 can 
be used to express Ф  in terms of derivatives of u . This 
expression will eventually be substituted into Eq. (9)1  
to obtain the one differential equation for u . 1
1 The term “strain” is used here and further for brevity only; in 

fact, it is the longitudinal displacement gradient component, 
while expressions for genuine strains are nonlinear with respect 
to v.

u4X-  uXXXX; u4T -  u TTTT
The Eq . (10) above may be considered as the hier­

archical equation in terms of u , where two different 
levels of microstructure are expressed in five different 
dispersive terms, and the higher order terms contain 
the parameters of the second level of microstructure.

We have obtained the 6th order P D E  that is hardly 
to be solved explicitly in general case. However, we will 
find some exact travelling wave solutions of the P D E  
( 1 0 ), when the equation can be reformulated in terms 
of the phase variable z  =  x  ± Vt in the corresponding 
O D E ,  as follows:

( V + a 1) u + a 2( u ) + ( a 3 + V a 4)u 

+ (a 5 + ^ a 6 + V  a 7) u(VI) = 0 , 
where V  is the velocity of wave propagation.

ACOUSTICAL PHYSICS Vol. 56 No. 6 2010



874 CASASSO et al.

-4

200

i
100i

f

-2
t

' " \ _ y - 1 0 0

f l  =  - 8 ;  b  =  - 1 . 5  _ 2 0 0

2 4

Fig. 2. The polarity of exact solitary wave solution to the 6th order O D E in the form of the “mexican hat” depends on model 
parameters.

3. E X A C T  S O L U T I O N S  T O  T H E  6th O R D E R  
N O N L I N E A R  O D E

Upon the introduction of z  and integration twice 
with corresponding conditions at infinity |z| ^  ^
u, u' ^  0 the Eq . (11) may be rewritten as the nonlin­
ear O D E  of the 4th order:

u (IV) + au( 11) + bu 2 + cu = 0 , ( 1 2 )
where obviously:

a = (a  3 + V a 4) / X ; b = a ,/ X ; ( U )
c = (a  1 + V2) / X ; X = a  5 + V  a  6 + V4 a  7 .

Following the method described in [ 1 7 ]  and 
applied in [1 1 ], the exact solution to the O D E  (12) 
in terms of elliptic functions, containing only poles 
as the critical singularities, can be found in the fol­
lowing form:

u = M  p 2 (z ; g 2, g3) + S p ( z ; g 2, g3) + K, (14)

where the coefficients K , M , S  and invariants g  of 
the Weierstrass elliptic function p  are defined as 
follows:

1679д2-116 6 1с  + 6л/161А.
23322b  ’ А  = 28561c2 -  1296a4;

g2 = a2 + л/А/161. 
2028 ; M  = - 840/ b ; S = -140 a / (13 b );

96 1 a4 4 -  53 3-1(  a2 ±  У А / 16 1 )  a 2  -  257 049 c2 +  1449 (  a 2 ±  J  А / 1 6 1 )  2

1  860 243 840 a

(15)

(16)

(17)

Note that for the cubic nonlinearity, say, f 3 in 
Eq . (10) the exact explicit solution/of (11) in terms of 
p  will be written even simpler:f= k 0 + K t p , as shown 
in [17].

In general, any solution in terms of p  represents 
the doubly periodic function having poles (of 
4th order in our case) as singular points. The follow­
ing restriction on the wave and material parameters 
А = 0 leads to the relation for parameters a, c of the 
initial problem:

А = 0 ^  c = 36a2/ 169; K  = - 35a2/ 1014b ; 
g  3 = a 3/474552; g2 = a2/ 2028;

and to the simpler form of the solution:

I = _ 35ba2 _ 140 p  (  . a2 a3

|л = 0 = 1014 13b p vZ; 2028’ 474552
840 p  2 (  . a2 a 3

b p  VZ; 2028 ’ 474552

u

(19)

which may be animated in M athematica™  [15].
Usually the graph looks like two sharp axisymmet- 

rical peaks near z  =  ±8.8  for a — 620.
The function p  may be reduced to different har­

monic or elliptic limiting representations in depen­
dence of parameters, see, [16]. In the appropriate limit 
the Weierstrass elliptic function is reducible to the
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elliptic Jacobi cn-function and, further, to the 
bounded solution u0 in terms of cosh-2  function, i.e., 
to the solitary wave solution, as follows:

-4 -2u0 = s cosh ( z ) + q cosh ( z ) + p ; (2 0 )

p  = - c /b  = - -  18928 + 3640a -  31a

q = 140(52 -i- a ) ; 
13b ;

507b

s = -840/b ,
(2 1 )

which is valid under an additional restriction to the 
equation parameters

c = ( -  18928 + 3640a -  31a2)/507 (22)
and has the well known shape of the so called “ mexi­
can hat” :

The influence of values of a is smaller than of the 
parameter b, on which value depend both a sign of the 
soliton and its amplitude.

Animation of the solitary wave solution with 
parameters defined in (2 0 ) is instructive for visual 
demonstration of the soliton polarity changes resulted 
from the variation of parameters a , b and available in 
M athem atica™  via the command,

-2 -4
A nim ate[P lo t[p  + qcosh( z ) + s cosh (x) , { x, -4 , 4},  

P lotR ange ^  {-200, 200} ] ,
{ a , - 10 , 1 0 } , { b , - 10 , 1 0 } ] ] .

The approach used to obtain these solutions is sim­
ilar to that introduced and grounded in [17],  and can 
be applied to explicitly solve some other higher order 
O D E s , e.g., the 5th order K d V  and the 5th order 
m K d V  equations.

4. C O N C L U S I V E  R E M A R K S  A N D  D IS C U S S IO N
The effect of small heterogeneities on the overall 

behaviour of a material depends on morphological 
material characteristics such as shape, size and spa- 
tiotemporal distribution of various microstructural 
properties.

Sharp grain boundaries appear in many organic, 
polymeric and metallic compounds and ceramics. The 
surface free energy increases due to distinctive grain 
(or inclusion) boundaries, that leads to abnormal sen­
sitivity of the bulky structure to local stress growth, 
corrosion and fracture. Modeling of microstructure is, 
for that reasons, of great interest and importance for 
detailed description of microfracture mechanism in 
modern materials caused by local energy concentra­
tion in solitary strain waves.

The importance of correct estimations and averag­
ing in the elastic nonlinearity description was empha­
sized already in recent review papers, e.g., in [19, 20]. 
Variations in nonlinear acoustical and mechanical

properties of microstructured solids are very high as a 
rule, and one of the reasons consists in presence of 
very small linearly elastic components with quite dif­
ferent moduli, e.g., cracks or small inclusions of soft 
matter, [2 1 ].

Despite of many numerical simulations and mod­
eling on physical level of accuracy tentative exact solu­
tions to the highly nonlinear problems of microstruc­
ture dynamics are of considerable interest even in 
1 + 1 D  statement, see, e.g., [22, 23].

For example, the condition (22), being trans­
formed in terms of the initial parameters of the model, 
has a form of the 4th order algebraic equation for the 
velocity V 2. The general explicit solutions to it may be 
written, however, they are quite cumbersome. In par­
ticular, for a7 ^  0 and the material constants B x =  0 ; 
A 2 =  0 the equations for у  and for v  will be separated 
in (3), the equation for ф can be solved with a given 
function v  in the right hand side, and from the condi­
tion (2 2 ) one has an estimation for the wave velocity in 
the form

V2 = C 1/( 2 / 1  pc2) , (23)
which does not depend on A 1 Ф 0, neither on small 5b 
S2 in this case.

Another velocity value following from the condi­
tion (22) for B x =  0; C2 =  0 and written in terms of the 
initial parameters of the model, has the form:

V2 = C 1 1  -  B 2C1§1  + A 2§2 (2 4 )
I 1pc  V 2 B 2C 1 §1 -  A 2§2/

This case is less restrictive from the view point of the 
general model: in (3) the field equations for all 
unknowns v , ф, у  remain coupled.

It is necessary to note, that nonlinear equations of 
higher order were already discussed in connection 
with acoustical problems [24, 25]. We hope, our results 
are also informative for physical applications and 
could hardly be found without explicit formulae for 
the travelling wave solutions.
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