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A b s t r a c t — T h e  a c o u s t i c  f i e l d  a n d  t h e  f i e l d  o f  r a d i a t i v e  f o r c e s  t h a t  a r e  f o r m e d  i n  a  l i q u i d  l a y e r  o n  a  s o l i d  s u b ­

s t r a t e  a r e  c a l c u l a t e d  f o r  t h e  c a s e  o f  w a v e  p r o p a g a t i o n  a l o n g  t h e  i n t e r f a c e .  T h e  c a l c u l a t i o n s  t a k e  i n t o  a c c o u n t  

t h e  e f f e c t s  p r o d u c e d  b y  s u r f a c e  t e n s i o n ,  v i s c o u s  s t r e s s e s  a t  t h e  b o u n d a r y ,  a n d  a t t e n u a t i o n  i n  t h e  l i q u i d  v o l u m e  

o n  t h e  f i e l d  c h a r a c t e r i s t i c s .  T h e  d i s p e r s i o n  e q u a t i o n s  a n d  t h e  v e l o c i t i e s  o f  w a v e  p r o p a g a t i o n  a r e  d e t e r m i n e d .  

T h e  r a d i a t i v e  f o r c e s  a c t i n g  o n  a  l i q u i d  v o l u m e  e l e m e n t  i n  a  s t a n d i n g  w a v e  a r e  c a l c u l a t e d .  T h e  s t r u c t u r e  o f  

s t r e a m i n g  i s  s t u d i e d .  T h e  e f f e c t  o f  s t r e a m i n g  o n  s m a l l - s i z e  p a r t i c l e s  i s  c o n s i d e r e d ,  a n d  t h e  p o s s i b i l i t i e s  o f  

o r d e r e d  s t r u c t u r e  f o r m a t i o n  f r o m  t h e m  a r e  d i s c u s s e d .
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I N T R O D U C T I O N
Today, an increase in the number of publications 

devoted to the acoustic effect on microdrops and to 
the streaming induced in them is being observed. 
Devices (microboards, microchips) implementing the 
motion of drops under the effect of surface acoustic 
waves (SAWs) are under development [1—10]. As a 
rule, SAWs are excited in a plate made from piezoelec­
tric material. After the first experiments [11], many 
studies concerned with this subject had been carried 
out, which resulted in the formation of an important 
field of applied research: acoustoelectronics [12]. In 
this field, the studies were stimulated by the needs of 
biology, cytology, chemistry, and, in the last few years, 
nanotechnologies. One of the topical problems is the 
effect of SAWs on the content of a microdrop and, in 
particular, its mixing by SAW-induced streaming. The 
effect of SAWs on a drop is also used for breaking the 
drop into smaller droplets, i.e., for “ microatomiza­
tion” due to the capillary wave generation.

A n  important application of this is the formation of 
structures with a preset morphology on a substrate by 
drying a liquid with suspended particles in a wave field. 
Today, methods of structure formation due to the self­
assembly of nanoparticles in the course of evaporation 
of a solution are widely used. The acoustic effect not 
only introduces a new ordering mechanism, but also 
allows controlling the parameters of the structure to be 
formed.

Most of the studies concerned with the aforemen­
tioned problems are experimental ones. This is related 
to the technological needs. A n  appropriate theoretical 
description may be useful for understanding the phys­
ics of the processes and also for optimizing the param­
eters of both the system and the acoustic action. To

develop the theory, it is necessary to calculate the 
acoustic fields, the radiative forces, the acoustic 
streaming, and, finally, their effects on the particles.

Below, we consider the following system. A  liquid 
layer with a thickness h  overlies a solid substrate. A  
wave travels along the interface and penetrates into 
both the solid half-space and the liquid layer. The field 
formed in the layer acts upon the particles suspended 
in it so that it causes the formation of a periodic struc­
ture.

A C O U S T I C  F I E L D S  I N  T H E  L I Q U I D  L A Y E R  
A N D  I N  T H E  S U B S T R A T E

The Basic Problem

First, we consider the simplest statement of the 
problem [13]. The (x, y) plane of the Cartesian coor­
dinate system coincides with the boundary z  =  0 
between the solid substrate and the liquid layer. The 
z  axis is directed vertically downwards. The upper 
boundary of the liquid layer is the plane z  =  —h. The 
acoustic fields in such a system were considered earlier 
and described by I.A . Viktorov [13]. However, for new 
applications, a development of the theory is necessary. 
Below, we briefly review the known results in order to 
generalize them.

The displacement U  of an element o f the solid 
medium is expressed through the scalar Ф and vector 
V  potentials. For the two-dimensional problem (in 
which the displacement along the y  axis is absent and 
the potentials are independent of the y  coordinate),
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the displacements along the x  and z  axes have the 
form

U  = ( U, V  = 0 ,W) = УФ  + rot
тт дФ  дЧ дФ , дЧ

дх д z дz дх

The potentials satisfy the wave equations and, for 
monochromatic waves, the Helmholtz equations:

д_ + г Л
дх2 д1 2

(  V Ф + ^ Ф
l  Ч  J 1  k 2t4 j

=  0 . ( 1 )

Equations (1) involve the wave numbers k 2 =  ю/c, for 
longitudinal waves, and k t =  ю/с for transverse waves. 
The velocities of the waves are expressed through the 
Lame parameters X and p:

c, = J (X  + 2 p) / p , ct = T p T P .
Solutions to Eqs. (1) are sought in the form ofplane 

waves traveling along the horizontal axis, i.e., the 
x  axis, and decreasing with the z  coordinate:

(  V Ф
l  Ч

(  V
A  exp(- q z )

l  B  exp ( - s z ) J
exp( -  m t  + ik x ) . (2 )

Here, q =  J k 2 -  k 2 and s  =  J k 2 -  k 2 are the scales 
characterizing the decrease in the longitudinal and 
transverse field components with depth in the sub­
strate. According to Eq . (2), we seek a wave with a fre­
quency ю and a horizontal wave number k  determined 
from the dispersion equation.

Let us consider the field in the liquid layer —h < z  < 0. 
First, we assume that the liquid is an ideal one and 
apply the linearized Euler and continuity equations:

Род- + ' = 0, 7-7 + c 0 Po divu = 0. (3)д t д t

Here, u is the oscillation velocity vector of the liquid, 
p0 and p' are the equilibrium density and its acoustic 
increment, p ' is the acoustic pressure, and c0 is the 
velocity of sound.

For the liquid, it is convenient to introduce the sca­
lar potential ф. The corresponding expressions for 
acoustic variables and the wave equation derived from 
Eq . (3) have the form

u = У ф , p ' = -  Р0дф, -  ф 0Дф = 0. (4)
д t д t

We seek the solution to Eqs. (4) in the form of a wave 
traveling along the boundary with an unknown depen­
dence D(z) of its amplitude on the vertical coordinate:

ф = D (z ) exp ( -  i ю t + ik x ) ,

d  D у  j  2 / 2\ т л  n— - + (k0 -  k  )D = 0 .
dz

Here, k0 =  ю/^ is the wave number in the liquid. 
Determining the function D (z), we write the solution

ф = (C je r  + C2e~lrz) exp( -  iю t + ikx ), 

r = J k ^ - k 2.

Thus, the acoustic field in the substrate is described 
by potential (2 ), while the acoustic field in the liquid 
layer is described by potential (5). The relations 
between wave amplitudes, as well as the wave number 
k , are determined from the characteristic system and 
the dispersion equation that correspond to the bound­
ary conditions of the problem.

The following conditions should be satisfied.
(i) A t the interface z  =  0, the vertical displacements 

should be identical, i.e.,

W z = 0 д Ф  +  д Ч Л

■ д г  д x J z = 0

= ( -  qA + ikB )  exp ( -  i ю t + ikx)

= --b . = - (c 1 -  C2) exp( -  m t  + ik x ) .
m  z = 0 iю д1  ю

This relation should be satisfied for any x  and t. Hence, 
we obtain the relation between the constants A , B , C1 , 
and C2:

C  -  C 2 = - ^  ( -  qA + ik B ) . (6)
r

In what follows, the exponential factor corresponding 
to the wave propagation along the interface will be 
omitted.

(ii) A t the boundary z  =  0, the normal stresses 
should be identical: a zz =  —p. The normal stress in the 
solid is

X (д2Ф , д2Ф
= X l  д ?  + 3 ?

+  2  p
д2Ф + ^  V
■ дг2 дx дгJ  ’

CTẑ z = 0 = X( -  k 2 + q )A  + 2 p( q A  -  ik s B ) . 

The pressure in the liquid at the boundary is

P  = - Р 0ддф = «юр0ф = i юр0 (C  + C2).

Equating the last two expressions, we arrive at the sec­
ond relation between the constants:

( -  X k 2 + X q2 + 2 p q ) A  -  2 ip k sB  

= - i  ю р 0(  Cj + C2 ) .
(7)
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(iii) A t the boundary z  =  0, the tangential stresses in 
the solid are zero, because the liquid is assumed to be 
ideal. The tangential stress is

1 1  -  -  1  -  -

c2A  Ct

f  2 S 2 
1  -  —  

v t c j

a xz\z -  0
д 2 Ф d 2 ¥  5 2 ^ '

-  h i  2 - : r : - : : -  +  — -  -  " " " T

dx dz  e x 2 dz z -  о
-  -  2 ikqA  -  k 2B  -  s2B  -  0. 

This yields the third relation,

B  -  -2  i " kq A
2 2  k  + s

(8 )

(iv) A t  the free surface of the liquid, i.e., at the 
upper boundary of the liquid layer z  =  — h , the acoustic 
pressurep' is zero:

t i  • I — i r h  i r h  л

p  Iz- - h  -  lЮр0ф|z - - h  -  C 1e + C2e -  0.
This yields the fourth (and last) relation,

C2 -  - C 1 exp(- 2 ir h ) . (9)
Thus, we have four homogeneous equations (6)— 

(9) for determining the unknown amplitudes A , B , C1, 
and C2 and the wave number k. The dispersion equa­
tion is derived from the condition that the determinant 
of the system is zero:

4k2qs -  (k 2 + s2 f  -  — qkR 
р

r  4 a n (rh) 

r*1tanh ( r* h ).
( 1 0 )

We note that Eq . (10) differs from the dispersion equa­
tion obtained in [13] (see Eq. (1.58) in [13]). If, in 
Eq . (10), we set the liquid density p0 or the layer thick­
ness h to zero, we obtain a simple dispersion equation 
for Rayleigh waves traveling along the solid-vacuum 
boundary. The right-hand side of Eq . (10) takes into 
account the effect of the liquid layer.

The upper row on the right-hand side of Eq. (10) 
corresponds to such a solution to this equation that the 
wave velocity in the system is greater than the sound 
velocity in the liquid but smaller than the longitudi­
nal and transverse wave velocities in the solid: c > c0, 
C < ct < Cj. The lower row on the right-hand side of 
Eq . (10) corresponds to a wave velocity smaller than 
the sound velocity in the liquid: c < c0. In this case,
r  =  ir*, r*  =  J k 2 -  k 2 .

1 P0
4 р

f  Yc_

v cty
h -■

c i

2
( 1 1 )

x <
f  2̂ - 1/2 f 1 2s!

1  -  Y tanh 1 -  -2[  c^ 1  c a1 c2J

c > о ,

c < c0.

Here, H  =  ®h/c0 is the wave thickness of the layer. 
Since the variable H  contains the frequency, for this 
type of wave a dispersion takes place.

To analyze Eqs. (11), it is convenient to normalize 
all the velocities in Eqs. (11) by the transverse wave 
velocity ct. In order to avoid the inaccurate statements 
encountered in [13], we begin with considering the
simple specific case where c i2 / c2 =  2. In this case, the 
root of the dispersion equation that corresponds to the 
Rayleigh wave (traveling along the boundary between 
the solid half-space and the vacuum) is determined
analytically: cR / c2 = XR =  3 — J 5  ~  0.764. For this 
case, dispersion equation (11) is simplified. The 
explicit expression for the wave thickness of the layer 
has the form

x arctanh

H  - 1 2 X  
1 - 2 X

X s -  0.442 < X < X 0

H - I 2 X  
2 X -  1 n n + arctanh

x [ j l - X

_ 1

'  2  ’

Y p ^ - X l  

- P 0 X 2

X 0 < X  < 1.

( 1 2 )

The Dispersion Curves

Substituting the expressions k  =  ю/c, k  =  ю/c , k t =
ю/c, q =  ^ / c -2 -  c-2, s  =  ^ / c -2 -  c-2, and r  =

ю a/c 2̂ -  c~2 in Eq. (10), we represent dispersion equa­
tion (10) in the form

Here, X  =  c2/ c 2 ; for definiteness, we assumed that
2 2c0 / ct = X 0 =  0.5. The quantity X s ~  0.442 is identical 

to the value of X  at which the argument of the hyper­
bolic arctangent in Eqs. (12) is unity. The correspond­
ing velocity of the wave proves to be identical to the 
velocity of the Stoneley wave cs  at the boundary 
between the solid and liquid half-spaces. This velocity
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H(n = 0) H(n = 1, 2)

Fig. 1. Illustration of dispersion relation (12). The vertical 
axis represents the wave thickness of the liquid layer H  = 
wh/c0, and the horizontal axis, the normalized square of

2 2the wave propagation velocity in the structure X  = c2/  ct .
2 2The following parameters are preset: 4p/p0 = 10, cl /ct = 2,

2 2and X0 = c 0 / ct = 0.5. In this case, for the Rayleigh wave,
2 2 2 2 Xr = cR / ct x  0.764; for the Stoneley wave, XS = cS /ct »

0.442.

Fig. 2. Dependence of the velocity of wave propagation 
along the boundary between water and lithium niobate on 
the thickness of the liquid layer. The abscissa axis repre­
sents the layer thickness normalized to the wavelength in 
the liquid, and the ordinate axis, the relative deviation of 
the velocities of the surface and Rayleigh waves.

is known [13] to be somewhat smaller than the wave 
velocity in the unbounded liquid, cS < c0, for which X = 
X 0 =  0.5 in Eqs. (12). The point X 0 =  0.5 separates the 
regions of applicability of the first and second formu­
las (12). The value n =  0 corresponds to the zero-order 
mode, and the values n =  1 , 2 , ... correspond to modes 
of higher orders.

In Fig. 1, dispersion curves (12) are plotted for the 
modes with the numbers 0 , 1 , and 2 . It should be noted 
that, as the layer thickness H  increases, the propaga­
tion velocities of higher-order modes tend to the 
velocity of sound in the liquid, whereas the velocity of 
the zero-order mode tends to the velocity of the 
Stoneley wave.

Figure 2 shows the dispersion dependence for the 
system that was used in the experiments described in 
[14]: a film of an aqueous solution on a lithium nio­
bate substrate. The following parameters are preset: 
the liquid is represented by water with the density 
p0 =  1 g/cm3 and the velocity of sound c0 =  1500 m/s; 
the lithium niobate substrate has the density p = 
4.7 g/cm3, the longitudinal wave velocity ct =  7250 m/s, 
the transverse wave velocity ct =  3750 m/s, and the 
Rayleigh wave velocity cR =  3480 m/s; the frequency of 
waves is 15 M H z . Figure 2 shows the dependence of 
the relative deviation of the wave velocity c from the 
Rayleigh wave velocity cR on the liquid layer thick­
ness H . For the principal mode, when the thickness H  
is small, these velocities differ only slightly. As H  
increases, the velocity c decreases; when the thickness 
is large, this velocity tends to the Stoneley wave veloc­
ity cS, which, at the given parameters, is very close to 
the velocity of sound in the liquid c0. A t the same time, 
as H  increases, the next (first order) mode arises, its 
velocity tending to the sound velocity in the liquid 
when H  —— <x>. A t the point of the first mode genera­
tion, the velocity of this mode is identical to the trans­
verse wave velocity in the substrate ct. As a rule, in the 
experiments, the layer thickness is much smaller than 
the wavelength ( H  <  1) and the velocity c little differs 
from the Rayleigh wave velocity cR. Thus, one can 
expect that the period of the structure formed from 
nanoparticles will be approximately identical to half 
the Rayleigh wavelength.

The Acoustic Field in the L iquid Layer
In view of Eq . (5), after determining the con­

stants C1  and C2, we write

ф  = - i  a A i  k- sinrV  + h )  e-'iM - ы . (13)
r k  2 + s 2 cos rh

From Eq . (13), we determine the components of the 
oscillation velocity

u = V (D (z) eikx) e~ibw t •/ n dDik D ; —
d z

- i w t + ikxe
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Thus, the amplitudes of the horizontal and vertical 
velocity components are

Ux

юк  q ,,2 sinr(z  + h  )a  
k 2 + s2r  * cosrh

(~10-11 m). However, in some specific cases, for 
example, when particles suspended in a solution form 
a polymer film as a result of solvent evaporation, the 
effect of surface tension may be of interest.

u
z

-ю а к 2 cos r(z  + h) a  
k 2 + s2 * cosrh

The Inclusion o f  Surface Tension

In calculating the acoustic field and the radiation 
forces, it is necessary to estimate the effect of addi­
tional factors. One of them is the surface tension. With 
this factor taken into account, the basic problem 
acquires another condition instead of condition (iv) 
(Eq . (9)) at the free surface of the liquid. A ll the other 
boundary conditions (Eqs. (6)—(8)) remain the same. 
The new condition involves the pressure at the free 
boundary z  =  — h in the presence of surface tension, 
which is determined by the Laplace formula

p  -  p  0 = * (Ц ^
2 dx d y 2

(14)

Here, a  is the surface tension coefficient and E is the 
surface displacement. Let us differentiate Eq. (14) 
with respect to time. Then, we express the pressure p  
given by Eq. (14) through the velocity potential ф and 
use the evident relation дЕ/д* =  uz =  дф/дz for the ver­
tical velocity component. As a result, we obtain

2 2  
р 0дд_ ф  + a  А - ^ Ф

д i д х 2 дz
=  0 . (15)

Substituting potential (5) in boundary condition (15), 
we arrive at the equation р0ю2̂  + a k 2D' =  0. This leads 
to the following generalization of relation (9) between 
the constants:

c 2 = - c 1 1-+-i:fexp (-2  irh) = -Q e x p  (-2  i r h f ,
1 -  iE (16)

E  = a  k 2r /  p0 ю2.
In Eq . (16), we introduced the effective thickness of 
the layer:

h eff = h - -a r c ta n E . (17)
r

The dispersion equation is similar to that obtained in 
the problem without surface tension, namely, in the 
previous equation (10), it is necessary to make the sub­
stitution h ^  heff.

Since the combination of parameters E  is small in 
all the cases, effective layer thickness (17) differs from 
the true thickness h by approximately E /r  =  a/(p0c2). 
The latter quantity is independent of h and ю. Fo r a 
thin layer of pure water, this quantity is very small

The Inclusion o f  Sound Attenuation in ihe L iquid

One more factor that may affect the field structure 
is the attenuation of sound in the liquid. In the pres­
ence of attenuation, equation of motion (3) acquires 
an additional term that contains the effective viscosity 
coefficient b. Then, wave equation (4) takes the form

-  c0Д ф  -  -  д д ф  = 0 . ( 1 8 )
д* p 0 д *

The solution to Eq. (18) has the form of expression (5)
/ 2 2with the parameter r  being replaced by r1 =  л/к 1 -  k  ,

where ^  ^  (1 — i5)-1 is the complex wave number
in the liquid. The parameter 5 =  юЬ/р0 c 0 is small if the 
absorption in the liquid at distances on the order of 
wavelength can be considered to be weak. The same 
replacement r ^  r1 should be made in dispersion 
equation (10).

Since the object of most interest is a thin layer, 
namely, a drying liquid film, we restrict our consider­
ation to the presence of zero-order mode alone in dis­
persion equations (10) and (11). Expanding tan(rxh) in 
a series for a small layer thickness and assuming that 
the values of parameters are the same as those in 
Eq. (12), we obtain a simplified dispersion relation:

v m  -  ( ■  -  D 3 / 2

=  J L P W 1  +  H - ? X - - _ 1  _  Г5Н )
4 7 2  p  2  3  2 X  3 )

(19)

One can see that the only imaginary term on the right- 
hand side of Eq . (19) is proportional not only to the 
small parameter 5, but also to the cube of the small 
wave thickness of the layer H. A  similar dependence on 
the parameters 5 and H  will occur for the imaginary 
additions to X, c, and the wave number. This means 
that, as the liquid film dries, attenuation rapidly 
decreases and becomes negligibly small. Evidently, in 
all the cases, attenuation in the system is smaller than 
in the unbounded liquid, because the major part of 
wave energy is concentrated in the ideal medium, i.e., 
in the solid half-space.

The Inclusion o f  Viscous Siresses a* ihe Boundary 
between *he L iquid Layer and *he Subs*ra*e

Shear viscosity creates an additional mechanism of 
wave interaction at the boundary between the liquid 
layer and the substrate. If  shear viscous stresses are

ACOUSTICAL PHYSICS Vol. 56 No. 6 2010
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taken into account, only the third boundary condition 
given by Eq. (8) changes. The new condition is the 
equality of tangential stresses at z  =  0 :

® x z

, д2Ф
dxdz

+ д2ч-
d x 2

Substituting expressions (2) and (5) for the potentials 
in this formula and applying the first boundary condi­
tion given by Eq . (6 ), we obtain the relation

B  = - 2 i k q ------------------- A , p = ю n .
k 2 + s 2 + 2 i p k  h

Using the remaining boundary conditions, we deter­
mine the constants

юю- A exp(±irh) s2 -  k 2C1 2 = ± - - A
2  r  cos rh k  + s2 + 2 i pk2

and, finally, the dispersion equation

4k2qs( 1 + ip) -  (k2 + s2)2( 1 + ip 2  k
, 2 2 k  + s (2 0 )

= p-qk4ta-rrh 
p t r

The contribution of tangential stresses appears on the 
left-hand side of Eq . (20) and is determined by the 
parameter p, which is usually small. With allowance 
for the smallness of p and the wave thickness H of the 
liquid layer, we obtain a dispersion relation similar to 
Eq . (19):

y m  -  ( 1  -  f 2 + ip ( . / r - i  - f A

= J -L R -  j i/2  

4^2 p

(2 1 )

In Eq . (21), we replace X  by X(1  + iA), where A  is a 
small imaginary addition. After calculating A , we cal­
culate the attenuation coefficient, i.e., the imaginary 
part of the wave number:

k  = - k  A  = ШЮ ( 1  -  X
2  2  cc2 (  2

One can see that, when the thickness of the liquid layer 
is small, the wave attenuation occurs approximately in 
the same way as it would occur for a shear wave in a 
solid with a viscosity identical to the viscosity of the 
liquid.

A  Standing Wave in the L iquid Layer
Now, let two waves propagate in the substrate in 

opposite directions. The potential of the wave traveling 
in the positive direction of the x  axis is determined by 
Eq . (13). The wave propagating in the negative direc­

tion (—x) can be obtained by the formal replacement 
k  ^  — k  in Eq . (13). The total potential is as follows:

ф  =  ф 1 +  ф 2  =  2  D  ( z )  c o s  kxe

= -  ю A 2-q  k -  s i n r ( z  +  h ) c o s kx e -u 
r k2  + s 2  c o s  rh

(2 2 )

Potential (22) corresponds to a standing wave with an 
amplitude periodically varying with the horizontal 
coordinate x .

From  Eq. (22), we determine the real components 
of oscillation velocity and the acoustic pressure:

k
ux = -  F 0sinr(z + h ) sinkxsinюt, 

r

uz = - U 0cos r(z + h ) cos kx  sin юt,

p  ’ = !--— U0sin r( z  + h ) cos kxcos ю t. 
r

Here, we introduce the notation for the amplitude 
factor

U0 = 2 - M - — h —  A. 
cos rh( k2 + s2)

Evidently, attenuation should cause variations in the 
wave numbers k  and r , each of which will acquire an 
imaginary addition. In an ideal medium, potential (22) 
has only the cosine component in the dependence on 
the x  coordinate, whereas, in the presence of attenua­
tion, a sine component appears.

T H E  R A D IA T I O N  P R E S S U R E  
O F  A N  A C O U S T IC  W A V E A N D  T H E  S T R E A M I N G  

I N  T H E  L I Q U I D  L A Y E R
Above, we calculated the characteristics of the 

acoustic field in the liquid layer. The characteristics 
vary according to the harmonic law, and their average 
values are zero. Therefore, the period average force 
acting on a liquid volume element and on the particles 
suspended in the liquid should also be zero. In this 
approximation, the expected formation of structures 
should not occur. Nonzero average values appear 
when the quadratically nonlinear terms are taken into 
account in the initial hydrodynamic equations. Since 
the average values of quadratic combinations of oscil­
lating variables are not identically zero, we obtain a 
nonzero average force that leads to structuring of the 
ensemble of particles.

The Behavior o f  Sm all-Size Particles 
in the L iquid

The radiation pressure of sound was described in 
many reviews (see, e.g., [15]). The pressure acting
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from the side of an acoustic field of arbitrary config­
uration on a suspended particle was calculated in 
[16]. The origin of the radiative force is the response 
o f a particle to the scattering o f the incident wave. 
However, for small-size particles, such a mechanism 
is presumably not the governing one. As is known, 
the fraction of the wave energy scattered by a particle 
is proportional to (k R )4, where R  is the particle 
radius (see, e.g., [17]). For example, for polystyrene 
particles with a radius of 1 0 0  nm under an incident 
wave with a frequency of15  M H z  [14], this parame­
ter is on the order o f 10-9. Therefore, the predomi­
nant mechanism is as follows: because of their small 
size, the particles can be carried away by the acoustic 
streaming in the liquid and can move together with 
the latter.

Let us consider a small particle in an oscillating liq­
uid. The equation of motion has the form (see, e.g., 
[18])

m 4 ( X -  S )  = -  m 'Ц  + F dlss + F . (23)
d t d t

Here, X  is the displacement of a particle, S is the 
acoustic displacement of the liquid at the particle site, 
Fdiss is the dissipative force due to the flow around the 
particle, and F  is the radiative force. If  the particle has 
a spherical shape, we have

m = m S + -  m0, m ' = m s -  mo = 3n R \ p s  -  po),

for the radiation pressure on a particle in a standing 
wave field, we reduce Eq . (24) to the form

R (k R ) p s + ^ x p s - p o )
2 ps + p0

- 4  p o
3 2
3 Cs  p sJ

2p Uo

Here, uo is the amplitude of the oscillation velocity of 
the liquid. Estimates by this formula show that, for the 
particles used in the experiments [14], the difference 
between the velocities did not exceed 1 o- 7—1 o-8 m/s. 
Thus, the hypothesis that small-size particles are 
almost completely carried away by the acoustic 
streaming while the radiative force acting on the parti­
cles can be neglected seems plausible.

The Radiation Pressure on the L iquid

The radiative force Ft is expressed through the radi­
ation stress tensor n ik [19]:

Fi = - d L  n tk, n ik  
d xk

— 2 < p ' 2>  8 i k  +  p o <  u ^ k ) . (25) 
p o co

Here, the angular brackets denote averaging over the 
period of the acoustic wave and s is the nonlinearity 
parameter of the liquid. For the nonzero components 
of the tensor, from Eq . (25) we obtain the expressions

where ms  and R  are the mass of the particle and its 
radius, mo is the mass of the displaced liquid, and ps 
and po are the respective densities. I f  the densities are 
different, the particle placed in the acoustic field expe­
riences the action of forces both depending on the vis­
cosity of the medium and independent of it.

We represent Eq. (23) in terms of the velocities of 
the particle v  =  dX /d t  and the liquid u =  d%/dt, and, 
specifying the expression for the dissipative force [18], 
we obtain the equation

4 n R 3fps + d ( v  -  u) = - 4 n R 3(ps -  po)^
2  2 dt dt

■6 n n R ^ 1  + R v -  u)  (24)

-  3n R 2 f  1  +  ^  d  (  v  -  u )  +  F.
и  V  9 V 2  П 2  dt

n ** = — 2 < P '2> + po < u2> > 
po co

П х , = П х  = po < uxuZ>,

n zz = — 2 <P '2> + po < u2>. 
po co

Thus, the contribution to the force is made by both 
diagonal and nondiagonal elements of the radiation 
stress tensor. Calculating the average values of acoustic 
quantities, we obtain

k 2
< û > = —  U2 sin2 r  (z  + h ) sin2 k x ,

2 r2

, 2, Uo 2 , . x 2 ,
< u z >  =  "— c o s  r ( z  +  h ) c o s  kx ,

In a steady-state flow, where the velocities v  and u are 
time independent, their difference is determined by 
the effects of the radiative force F  and the Stokes force. 
The radiative force tends to increase the velocity of the 
particles with respect to the flow, whereas the Stokes 
force tends to decrease it. Using the G o r’kov formula

< uxuz> = - -k- Ujsin2 r(z + h ) sin2 kx ,

2 2
, , 1  poи  Ta . 2 ,  2 ,<p > = ------Uosin r(z + h ) cos kx.

2  r
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Fig. 3. Radiation pressure potential: (a) the three-dimensional representation and (b) the sections of the potential profile at the 
interface z = 0 (the solid line) and at the free surface z = — h (the dotted line).

Correspondingly, the components of the radiation 
stress tensor are

П XX Ро Uo sin2 r( z + h )(s k l  + ( k 2 -  s k0  ) sin2 k x ) , 
2  r

П  xz = П  zx = U0 sin 2 r (z  + h ) sin 2 kx ,

П  zz = ^ -̂—cos2 kx
zz 2

( ( s k 2 -  1
2

\
2sin r(z  + h ) + 1

VV r J J
Now, we calculate the radiative forces:

F  = d n xx . d n x z  =
dx dz 4

( k  2 2

x s i n  2  kx (s -  1 ) —  c o s 2 r(z  + h ) - 1 +

V r V r JJ

F  = d n zz + ^̂ r i^x = P o ^
dz dx 4

( k2x s i n 2 r(z  + h ) (s -  1 ) —  c o s 2 k x  + (^ ^ )̂kci0 -l- k 2

V r r2 J

(26)

(27)

Expressions (26) and (27) are convenient for analyzing 
the radiative forces in a liquid layer with a small thick­
ness, when the surface wave velocity is greater than the 
velocity of sound in the liquid, because, in this case, all 
the coefficients are positive and the signs of the terms 
appearing in the formulas can be easily determined. 
For the horizontal force Fx, the factor in parentheses is 
always negative for any values of z , so that the direction

of Fx is only determined by the horizontal coordinate x. 
Since the dependence on x  is periodic, the force 
exhibits maxima and minima, the latter corresponding 
to zero force value. Presumably, the particles sus­
pended in the liquid are mainly grouped in the regions 
of these minima. For the vertical force, the factor in 
parentheses is positive for any value of x , so that the 
direction of the vertical force component does not 
depend on the horizontal coordinate x  and is deter­
mined by the z  coordinate alone. A n  analysis of the 
dispersion curves shows that the parameter rh  can vary 
from 0  to n/ 2  with a subsequent periodic shift by nn, 
where n is an integer. This means that the factor 
sin2 r(z + h) is positive and the vertical component of 
the radiative force tends to gather the suspended parti­
cles at the free surface of the liquid. In other words, as 
the thickness of the layer decreases in the course of 
evaporation, the grouped particles are deposited on 
the substrate surface.

Since the radiative forces are quadratic in the 
acoustic field, the period of the spatial structure 
formed under their action in the horizontal direction 
is identical not to the acoustic wavelength, but to half 
the acoustic wavelength, because 2 k = 2  x 2 n/X  = 
2n/(A,/2).

The Radiation Pressure Potential

In the general case, the radiation pressure is a 
tensor quantity, but, in the problem under study, 
rot F  = 0; i.e., the radiation pressure force can be 
represented as a gradient of a certain potential:
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F  =  —grad V. Let us determine this potential by 
using Eqs. (26) and (27):

V  =
Po U 0 k

(s -  1) --cos2 k x c o s 2 r  (z  + h )

( s  -  1 )  k ]  +  k 2

+  --------y0------( cos2  r(z  + h ) -  1 )
r

(  ,2 У
(s -  1 )ko + 1

r  У
cos2kx

Here, the integration constant is introduced in such 
away that, at the layer surface z  =  —h, the hydrody­
namic pressure related to acoustic streaming (see the 
next section) is zero. Figure 3a shows the characteris­
tic form of the potential for the parameters of the 
media considered above. Figure 3b shows the profiles 
of the potential for two sections: near the boundary 
between the solid substrate and the liquid layer and 
near the free surface of the liquid layer. The solid line 
corresponds to the potential near the interface, and 
the dotted line, near the surface. The vertical lines 
indicate the positions of the extrema of the potential. 
One can see that the horizontal structure of the poten­
tial does not depend on the vertical coordinate and 
contains minima, which points to the possibility of 
particle concentration in these regions. The absolute 
minima of the potential are close to the free surface of 
the liquid layer; at the same time, near the interface, 
the potential well is narrower. Hence, as the layer 
thickness decreases, the particles are additionally con­
centrated in the regions corresponding to the minima 
of the potential.

The Acoustic Streaming Caused 
by the Radiation Pressure

The radiation pressure sets the liquid in motion and 
causes it to flow. The structure of the steady-state 
streaming at small hydrodynamic Reynolds numbers 
is calculated using the system of equations [20]

z

Fig. 4. ines. The abscissa axis represents the quan­
tity xj = 2kx, and the ordinate axis, z\ = 2kz.

Taking into account the structure o f the calcu­
lated field o f radiation forces, we seek the solution 
with the following dependence on the horizontal 
coordinate:

¥  = ¥ 0 (z)  sin ( 2 k x ) , Ux = A (z)  sin (2 k x ) ,

Uz = B (z)  cos (2 k x ) .

Formulas (29), which determine the stream function, 
suggest the relations A  =  ¥ 0 , B = —2k¥0, and B' =  —2kA. 
Integrating the equation for the streamlines d x / Ux =  
dz/U z and taking into account the aforementioned 
relations, we obtain the equation ¥ 0sin(2kx) =  const. 
One can see that the flow velocity is zero on the lines 
x  =  n n /2 k  lying in the (x, z) plane. These lines sep­
arate the regions with oppositely directed velocities 
(see Fig. 4).

This qualitative result is confirmed by the result of 
streamline calculation. From biharmonic equation (29), 
we obtain an ordinary differential equation for the 
function ¥ 0(z), which can be solved:

- p A U  = -  V P  + F ,  divU = 0. (28)
Here, U  is the velocity of acoustic streaming and P  is 
the flow pressure. Applying the rot operation to the 
first of Eqs. (28) and taking into account the potential 
nature of the radiation force F , we obtain a biharmonic 
equation for the stream function:

A A ¥  = 0, Ux = d ¥ / d z , Uz = - d ¥ / d  x. (29)
These equations should be complemented with 
boundary conditions. A t the boundary z  =  0 of the liq­
uid with the solid half-space, the flow velocity is zero 
( Ux =  Uz =  0); at the free surface of the liquid z  =  —h, 
the vertical flow is absent (Uz =  0) and the pressure on 
the surface is also absent (P  =  0).

¥ 0 = a [ sinh ( 2 kz) + p cosh ( 2 kz)

+ y ( 2kz)sinh ( 2kz) + S( 2 kz)  cosh ( 2 k z)].
Here, the constants a , p, y, and 5 are determined by 
the boundary conditions. From the conditions at the 
interface z  =  0, we find p =  0 and 5 =  —1. Then, for the 
stream function and the velocity components of 
streaming, we obtain

¥  = a [ sinh ( 2 kz) + y( 2kz) sinh ( 2 kz)

-  (2k z ) cosh(2kz)]sin (2kx),
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Ux = 2k  a [y  sinh ( 2 kz)  + y( 2kz)  cosh ( 2 kz)  

-  ( 2 k z ) sinh(2 k z ) ] sin( 2 k x ),

Uz = - 2 k  a [  sinh (  2 kz) + y ( 2 kz)  sinh (  2 kz)

-  ( 2 k z )cosh ( 2 k z ) ] cos( 2 k x ) .

The condition Uz(z =  —h) =  0 determines the form of 
Y , and the constant a  is expressed through the radia­
tion pressure:

Y  =

sinh(2 kh) -  ( 2 kh)cosh(2 kh) 
( 2 kh )  sinh ( 2  kh)

a PoUQh
32 kp sinh ( 2 kh)

The final solution for the stream function has the form

¥  = ---------P-oUoh------- [sinh ( 2  kz)
32 k  n sinh ( 2 kh)L

+ sinh( 2 Ш ) -  ( 2  k h )cosh( 2  k h ) ( 2 k z ) sinh( 2 kz)  
( 2 kh )  sinh ( 2  kh)

-  ( 2 k z ) cosh(2 kz) sin ( 2  k x ) .

This expression was used to plot the streamlines of the 
acoustic streaming. As one can see from Fig. 4, the 
streamlines are denser near the lines 2kx  =  nn. This 
means that, in the presence of particle interaction 
forces, which may be either of hydrodynamic or some 
other origin (e.g., of electric or chemical nature), sus­
pended particles should mainly concentrate in these 
regions. Thus, a standing surface wave can serve as the 
controlling factor for the formation of ordered struc­
tures from nanoparticles suspended in the liquid.

C O N C L U S I O N S
We developed a theory that qualitatively explains 

the experiments on the formation of ordered struc­
tures of particles in the course of drying of a colloidal 
solution on a solid substrate. We demonstrated the 
possibility to control the process by exciting a wave 
that propagates along the liquid—solid interface. We 
calculated the wave field, the radiation forces, and the 
acoustic streaming in the liquid layer. We considered 
the main factors that affect the formation of the acous­
tic field, the vortex streaming, and the nanoparticle 
structures. The radiative forces arising in the liquid 
layer serve as the main factor of ordering. The period 
of the structure formed on the substrate is identical to 
half the wave length. The radiation pressure that acts 
on the particles carried by the liquid and is due to the 
acoustic wave scattering by the particles can presum­
ably be neglected. A n  important role can be played by 
forces of nonacoustic origin, which lead to aggrega­

tion of particles drawn together under the effect of 
streaming.
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