
IS S N  1063-7710, Acoustical Physics, 2010, Vol. 56, No. 6, pp. 840—847. © Pleiades Publishing, Ltd., 2010.

Electroacoustic Waves Confined
by a Moving Domain Wall Superlattice of a Ferroelectric Crystal

E. A. Vilkov"* and S. N. Maryshev*
a Institute o f Radio Engineering and Electronics, Ulyanovsk Branch, Russian Academy o f Sciences, 

ul. Goncharova 48, Ulyanovsk, 432011 Russia 
b Moscow Institute o f Physics and Technology (State University),
Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141700 Russia 

*e-mail: e-vilkov@yandex.ru 
Received February 25, 2010

A b s t r a c t — T h e  d i s p e r s i o n  p r o p e r t i e s  o f  e l e c t r o a c o u s t i c  w a v e  m o d e s  c o n f i n e d  b y  a  s u p e r l a t t i c e  o f  u n i f o r m l y  

m o v i n g  1 8 0 °  d o m a i n  w a l l s  i n  a  t e t r a g o n a l  f e r r o e l e c t r i c  c r y s t a l  a r e  c o n s i d e r e d .  I t  i s  s h o w n  t h a t  t h e  m a n i f o l d  

o f  p a r t i a l  e l e c t r o a c o u s t i c  i n t e r f a c i a l  w a v e s  i n  t h e  l a t t i c e  i s  r e s t r i c t e d  t o  t h e  f i r s t  a l l o w e d  b a n d ,  t h e  c o n f i g u r a 

t i o n  o f  w h i c h  i n  t h e  p l a n e  o f  s p e c t r a l  v a r i a b l e s  c a n  s i g n i f i c a n t l y  v a r y  u n d e r  t h e  a c t i o n  o f  t h e  m o v i n g  d o m a i n  

w a l l s .
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I N T R O D U C T I O N
The spectral properties of electroacoustic interfa

cial waves (EIWs) in ferroelectrics with a static peri
odic domain structure forming a superlattice have 
been widely investigated [1, 2]. It has been established 
[3, 4] that, due to the interaction between electroa
coustic oscillations of adjacent domain walls (DWs), 
the phonon spectra of a ferroelectric with the periodic 
domain structure can strongly differ from the oscilla
tion spectrum of an ordinary single-domain sample. 
This results in the formation of band gaps in the region 
of existence of the collective oscillations over the 
entire lattice volume and strong modification of such 
E IW  spectral parameters as interfacial localization 
and phase velocity.

The existing methods of obtaining structures with 
different lattice periods and the possibility of control
ling the period [5, 6] open up possibilities for applica
tion of the domain superlattices of ferroelectrics as 
sound conductors for various devices of acous
todomain electronics [7]. Additional opportunities, 
such as E IW  crystal scanning or Doppler transforma
tion of a frequency spectrum, should be attributed to 
D W  moving. Therefore, it is interesting to extend the 
results of investigation of the acoustic properties of the 
static superlattices of ferroelectric crystals [1, 2] to the 
case of dynamic superlattices, the specific feature of 
which is controlled displacement of the confining 
domain walls. Below, we consider E IW  propagation of 
equidistant uniformly moving 180° DWs in the 
dynamic superlattice using the example of 4-mm fer
roelectric crystals. Preliminary results were briefly 
reported in [8]. Unfortunately, in the aforementioned 
study, given analytical representation of the dispersion

relation for the EIWs by a quadratic equation in the 
sum of the quantities forming a free term, a numerical 
factor 4 prior to one of the terms was missed. The error 
did not affect the numerical results and, as a matter of 
fact, did not reflect on the qualitative conclusions on 
the changes in the E IW  spectra caused by D W  motion. 
Nevertheless, it is necessary to correct the analytical 
expressions for the E IW  spectra, which was an addi
tional stimulus for this study.

S T A T E M E N T  O F  T H E  P R O B L E M  
A N D  F U N D A M E N T A L  E Q U A T I O N S

The geometry of the problem is presented in Fig. 1, 
where the dynamic superlattice of equidistant 180° 
DWs with 010) orientation is shown in the accompa
nying frame of reference x0 y z  . By virtue of the ine
quality VD <  c, where c is the speed of light and VD is 
the velocity of D W  motion, this frame is related to the 
laboratory one x0yz via the Galilean transformation

X = x , y  = y  -  VDt, z  = z , z = t, (1)
where t is time. Crystal symmetry, type of polarization 
of waves, and geometry o f their propagation are taken 
as the same as in [1, 2], with the sole correction that 
the consideration is limited to the modes localized on 
DWs of the superlattice. Until now, the localized E IW  
modes have been considered only at small numbers of 
moving DWs, including the cases of a single moving 
D W  [9], a moving stripe domain (i.e., a pair of DWs) 
[10], and pairs of moving adjacent stripe domains of 
different thicknesses (a trio of DWs) [11].

As the main structure-forming element of the 
superlattice, we chose a pair of adjacent stripe domains
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of a ferroelectric with the interfaces y = 0, d, and 2 d  
shown in Fig. 1 in dark color. The remaining domains 
are formed by translation of this pair to whole number 
n of lattice periods 2 d  in the positive (n > 0) or negative 
(n < 0) direction of the y  axis. We ascribe the number 

j  =  1 to the lower domain of the pair of a lattice unit 
cell at 0 < y  < d  and the number j  =  2 to the upper 
domain at d  < у < 2d. Thus, each domain of the lattice 
will be defined by the translation number n =  0, ±1, 
±2, ±3, ... and the pair number j  =  1 or 2; the value 
n =  0 corresponds to the unit (initial) cell.

In view of the aforesaid, under the conditions of 
specified D W  motion at the velocity VD || y  || [010] the 
current coordinates in the laboratory frame are yn = 
VDt + nd. Considering that antiparallel polarizations in 
domains of the lattice unit cell are related to the sign 
alteration of piezoelectric modulus e1s, which is the 
only active one under the given conditions, we assume

e j  = ( - 1 )  +1 e, e > 0. (2)

Extend the validity of this condition over the entire lat
tice, assuming that in Eq . (2) we have

Fig. 1. Dynamic superlattice of uniformly moving equidis
tant 180° DWs in the accompanying frame of reference.

J 1 for nd  + VDt < y  < (n + 1)d  + VDt ,
1 2 for (n + 1)d  + VDt < y  < (n + 2 )d + VDt .

The lattice cell fields are described by the solutions of 
the equations [9—11]

Ц 1 = c2 V 2 Uj, V 2 Ф, = 0, (4)
d t2 j j

where ct is the velocity of shear wave propagation in a 
single-domain sample and Ф,- is the portion of the total 
electric potentials in domains

4ne<j5 ^  , C4Ф/ = —- p 5 Uj + Фу (5)

describing the near-interface electric fields induced by 
piezoelectric polarization charges from DWs. In virtue 
of Eq . (1), Eqs. (4) and (5) will take the following form 
in the accompanying frame of reference:

component of wave vector k± [8]:

k± = Q - J L . , (7)
ct 1 -  p2

where p = VD/c t.
Assume also that the E IW  length is much less than 

the characteristic size of a crystal. Under such condi
tions, the interfacial effects at the external interfaces of 
a ferroelectric, as well as the shape of the latter, will not 
have a considerable effect on the behavior of the elec
troacoustic waves and can be disregarded.

D E R I V A T I O N  O F  T H E  E IW  D IS P E R S IO N  
E Q U A T I O N  F O R  T H E  D Y N A M I C  L A T T I C E  O F  

A  F E R R O E L E C T R I C  C R Y S T A L
Solutions of Eqs. (6) within the pair of domains 

numbered with the indices j  =  1 and 2 of the unit cell 
can be presented as

и 1 (y ) = [ A  1 exp (-sy) + A  2 exp (sy )]

д  -  Vd | L Y Uj = c2 V 2U , V 2 Фj = 0 . (6)
дУ oyJ

x exp( ik ±y ) exp[ i(кц.х- Q t ) ] ,
Ф1 = [ C 1 exp (к  ||y) + C2 exp (- k  {ly )]

Then, assuming that the waves propagate in the plane
y0 Y  in the positive direction of the x  axis, with regard and 
for proportional displacements Uj and potentials Фу
with the exponential coefficient exp[i(k|| у — Q  У)], we 
conclude that the EIWs are noncollinear: k = (k||, k±, 0), 
k L ^ 0 (Fig. 1). Deviation of the E IW  front from the 
orthogonal position is determined by the transverse

x exp [ i(k ||у -  Q y ) ] , (0 < y  < d)

и 2 (y) = [ B  1 exp (- s y ) + B  2 exp (sy)] 

x exp( ik Ly ) exp [ i(k^x -  Q y ) ] ,
Ф 2 = [ D  1 exp (k  ||y) + D  2 exp (- k  {ly )]

(9)
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x exp [ i (k^x  -  Q t ) ] , (d  < y  < 2 d),

where Q  =  ю(1 — p2) is the E IW  frequency in the 
accompanying frame of reference and s  is the coeffi
cient of interfacial localization

s 1

1 -  p2
k2( 1 -  P2) q 2

2
Ct

related to frequency ю in the laboratory frame by the
formula ю =  ct//kjj(1 -  p2) 1 -  s2. To sew the domain
fields at the internal interface y  =  d, we will use the 
standard conditions of continuity of shear displace
ments, potentials, shear components of the stress ten
sor , and y-components of the electric inductions 
[12]:

Ф1(у )|у _ d _ Ф2(У) I? _ d> u 1 |y = d _ U2|y _ d,

<-?<̂1 _ дФ2
5У y _ d dy у _ d (10)

*44
5u1 5Ф1 —4 + e ——1
dy d y  - y _ d

44■ du
d y

-  e д Ф  
d y ' y _ d

Analogous boundary conditions should be written also 
at the external interfaces of the cell: y  =  0 and y  =  2 d  
(y =  2nd  and y  =  (n + 1)2d, if  a cell of arbitrary 
number n is assumed). Then, it is necessary to set the 
requirements of translational invariance of the solu
tion: u ( y ) =  u(у + 2d), ф( y )  =  ф( y  + 2d), and
0 ( y ) =  Ф(у + 2d). The latter are known in the lattice 
theory as the Bloch cyclic conditions [13], which allow 
elimination of recurrent connections between wave 
amplitudes in the neighboring periodic regions that 
follow from the conditions at the external interfaces. 
In  other words, relying upon the cyclic solution prop
erty stated for the extracted lattice unit cell (Fig. 1) in 
the form of the Bloch theorem [13]

y  =  0 (at j  =  1) or at the interface y  =  d  (at j  =  2). 
Then, using backward substitution of quantities Aj, B ,  
Cj, and Dj, with regard to relations (5) and (12), obtain

m.
Uj(y ) _ muj + У aj + 0 x фу + e jm 1

Ob44 c*4s

aj (У) _ | C44(s + ^-i)m1 -  с* Д 2кц sinh(kyу ))uy( 2 + L 2  ̂
s

+ m ' a;- + e1'5k|| sinh ( kjjjy )ф7- 

+ e1j5(cosh(k||y ) -  m ') ct,-,

ф/( У) _ ( - 1 )
+1 Ж2(m -  cosh(k||y ))

e01e 1.5

J  +1Ж 2 m1
+ ( - 1 1  - V  ae 1.5s

~) f  sinh (k||y ) Ж 2 m
cosh(k||,y) фу. + I -----k ~-U-  -  — Г"k|| s

(13)

°v (У) _ ( - 1 )
f  4 Ж С У  
V e *  J

sinh ( k|y) Uj

+

+ 0 x aj + ky sinh(kyу ) ф,  + cosh(k||jy)oj-.
In expressions (13), as everywhere above, Ж  is the 
coefficient of electromechanical coupling of a single
domain crystal and quantities Uj, aj, фу, and oj- in the 
right-hand side of the equalities specify the values of 
the corresponding fields and their combinations by 
formulas (12) at y  =  0 for the index j  =  1 and at y  =  d  
for j  =  2. Recall also that c*4 =  c44 + 4ne2/s, whereas 
m, m', and m x denote the values functionally indepen
dent of transverse coordinate y :

u1(0) _ u2( 2d)exp(i%2d), 
ф1 (0) _ ф2( 2d) exp( i d ), (11) m _ cosh ( sy ) — -sinh ( sy). s _exp(- i k ±y ),

and Ф1(0) _ Ф2(2d)exp( ix 2d),
where x is the Bloch wave number, one is allowed not 
to use the external boundary conditions explicitly.

According to the definition of [12], the transition 
matrix connects the value of the field (or the fields 
enchained with one another) at the layer “ input” with 
the value at the “ output.” For convenience of the fur
ther transformations, we make denotation

d S .
d\|/

,d_uj 
1 d y

Oj(У) _ д У ;, a j(y ) _ с4*4-2У' + e15 -дУ (12)5 Фу

and, based on (8) and (9), express amplitude constants 
A j, B j, Cj, and Dj via the field values at the interface

m _ cosh (sy ) + —-sinh (sy). s _exp(- i k ±y ) ,

m1 _ sinh (sy ) exp (- i k ±y ).

Hence, by virtue of Eq. (7), in particular at VD =  0, we 
have m  =  cosh(sy) and m l =  sinhsy).

Expressions (13) represent two (by the number 
j  = 1  and 2) systems o f four nonuniform algebraic 
equations that make it possible to associate the fields 
and their combinations at the interface у =  0 (y  =  d) 
of the first (second) domain with their corresponding
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values inside these domains. If  in (13) the respective 
values y  =  d  and у  =  2 d  are chosen for the numbers 
j  =  1 and j  =  2 — y  =  2 d, then the mentioned systems 
of algebraic equations will acquire the form

f  \
Uj (jd)

Uj(jd)

j ' d )
V V j( jd ))

( \
= L

uj (( j - 1 )d)
Uj (( j -  1) d )
фу(( j -  1) d)

V CTj(( j -  1)d) )

(14)

Here, Lj is the 4 x 4 matrix formed by the coefficients 
from the right-hand side of Eqs. (14) at j  =  1 and 2.

In order that Eqs. (14) will acquire the same struc
ture as that in relations (11), i.e., allow expressing the 
fields at the domain “ input” via the fields at the 
domain “ output,” we should solve system (14) with 
respect to the right-hand elements of the column 
matrix. Fo r this purpose, we introduce the inverse
matrix M j =  L - 1 called the transition matrix. After ele
mentary transformations based on the expressions for 
the coefficients from Eqs. (14), we obtain:

M j  =

m
5

m,
-44

eim 1

c*4 s 5
c*4 (s2 + k]_)

s5
m 1 +  Ж 1 c* 4k | |  sinh(k ^ d )  rm-  - в; -sinh(k ^ d )  ej ( -  m '/ 5 +  cosh(k ^ d ) )

Ж 2 c*
— (m / 5 -  cosh(k||d))
!

Ж 2с*4 k|| sinh ( k|| d )

" :X m 1 cosh (k .d ) - * m‘ sî ,h  (k' d)
ejs5 ejs5

0 —k|| sinh ( k||d) cosh ( k|| d )

0

where 5 =  exp(—2/k1d).
The product M  =  M 4 x M 2 of the “ domain” tran

sition matrices for the domains forming the lattice unit 
cell determines the transition matrix on the complete 
period of the structure by the known technique [13]. 
The elements of this matrix are cumbersome even for 
the static lattice and, for this reason, are not presented 
in explicit form. To facilitate derivation of their 
explicit representation, simplifying assumptions are 
usually made: most often, it is the assumption of weak 
wave coupling in piezoelectrics expressed by the con
dition Ж 2 <  1. To eliminate this limitation, further 
transformations during derivation of the dispersion 
relation for the EIWs were made in a P C  symbolic 
computation mode using the Mathematika package.

X 4 + X 2 Q ( k p  s ) + X 2P ( k||, s) + X R ( ky, s) + -1 = 0. (15)52

A t the specified geometric and material parame
ters, quantities Q , P, and R  serving as coefficients in 
Eq. (15) represent the following functions of spectral 
variables ky and s:

Q ( ky, s ) = -  2cosh(2sd ) 5  1 -  2cosh(2k^d )

83-{2sinh(sd) sinh(k||df)
+ s5V2 ’

P (kH, s) = 1 + 1  + ^ ^ |52 s

N e xt, we follow a standard procedure of derivation 
of the dispersion relation for waves in an unbounded 
lattice [13]. In virtue of cyclic Bloch equations (11), 
this procedure suggests determination of the eigenval
ues X =  exp(2/%d) of matrix M . For this purpose, we 
find and put to zero the determinant Det |M  -  XE| =  0, 
where E  is the 4 x 4 unit matrix, and x is the Bloch 
wavenumber characterizing the degree of phase syn
chronism of the electroacoustic oscillations on DWs 
over the lattice period. After a number of transforma
tions, the dispersion equation for EIWs can be written 
in the following form:

x sinh ( ky d ) sinh ( sd)

x  (̂ g  k  sinh(k||d)sinh(sd) + 51/2(1 + 5)

4cosh ( 2 k||d) cosh ( 2 sd)
+ 5

8j-{2k||sinh(2sd) sinh(2k||d)
5s

(16)
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D( k s\ _  2cosh(2sd) 2cosh(2£||fi0 к (k||, s ) _ -  2 -  —

8 Ж 2кц sinh ( sd) sinh ( k^ d )
+ '

The roots of Eq . (15), along with expressions (16), 
relate spectral E IW  parameters ky and s  to the Bloch 
wavenumber. Holding to the interpretation of the dis
persion law as the functional coupling s  =  s(ky) 
accepted in the theory of electroacoustic waves [14, 
15], it would be reasonable to consider Bloch wave
number x as an additional parameter. The occurrence 
of this parameter owes to the conditions of transla
tional symmetry of the solution describing EIWs over 
the entire set of allowed values —я/d < x < п/d. Thus, 
at the designated x value, Eq . (15), along with expres
sions (16), establishes the dispersion properties of a 
partial EIW .

Features of a spectrum of the partial EIWs confined 
by a moving lattice are determined by the velocity of 
D W  motion. In Eq . (15), the parametric dependence 
on VD is implicit and implemented through wave vec
tor component k L from (7). In view of the inconve
nience of the obtained expressions and, above all, 
transcendence of Eq. (15), the dependences of the 
E IW  dispersion spectra on the velocity of D W  motion 
can be demonstrated only numerically. However, mul
tiplying Eq . (15) by 5 and dividing it by X2 in accor
dance to Eq . (16), we obtain the simpler form:

a + a [ 4cos (k L d) + 4cos ( 2 xd -  k Ld)

-  8cosh(sd) cosh(kyd)]

+ cos(4 xd -  2k Ld) -  4cos(2 xd ) cosh(2sd)

-  4cos(2x d  -  2k Ld ) cosh(2k уd)

Expression (18) shows, in particular, that, while for 
astatic lattice (k± =  0), only one mode exists, in the 
case of a moving lattice (k± Ф 0) the spectrum splits 
into two different modes corresponding to the alter
nating “ + ” and “ - ” signs. This splitting can be consid
ered as the removal of a degeneracy of the interaction 
of acoustoelecric oscillations of DWs of a unit cell due 
to their transverse motion taking place for x =  n/(2d).

To turn to the static lattice at x Ф- n/(2d), one should 
take k± =  0 in Eq . (17). After solving the quadratic 
equations with respect to a and making some transfor
mations, we obtain the explicit representation of the 
E IW  dispersion equation:

s _  -ky Ж 1

Г sinh(kyflf)sinh(sd) K 19)
[ [ cos(xd) -  cosh(kyd)][cos(xd) ± cosh(sd)]J

According to Eq . (19), the partial E IW  spectrum in a 
ferroelectric with the static lattice initially includes 
two modes for a fixed value of the Bloch wavenumber 
different from n/(2d). This result could be expected 
from the results reported in [16] for a stripe domain. 
Note, however, that at finite values of the lattice 
period, no strict correspondence between the spectra 
of modes (17) and (19) in the limit VD ^  0 and the 
spectra from [16] is observed due to the conditions of 
translational symmetry of solution (11). O n  the other 
hand, the transition to the results of [16] under the 
condition d  ^  да is excluded from Eqs. (17) and (19) 
at all, as it requires additional consideration of 
another boundary problem for the structure of alter
nating domains with different thicknesses. The only 
available analytical confirmation o f correspondence 
remains the fact that in the limit d  ^  да, when the 
transition to an individual D W  occurs, from Eqs. (17) 
and (19) we immediately have the expected result s  =  
k ^ P  [14].

+ 2cos(2k Ld) + 4cosh( 2 sd )cosh(2kyd) _ 0,

where a =  4kyЖ1sinh(sd)sinh(kyd)/s. Then, solving 
Eq . (17) with respect to a , one can obtain a dispersion 
relation in the form more convenient for an analysis 
and numerical calculations. In particular, if  the Bloch 
wavenumber x =  n/(2d) is taken (in the periodic struc
ture only the x values lying within the first allowed 
band —n/d < x < n/d correspond to the physically non
equivalent states), from Eq. (17) we obtain

s _  Ж 2k |f  tanh(kyd) tanh(sd)

(18)
x [ 1 ± sin2(k Ld )/ cosh(sd)] ]

[ 1 -  sin2 (k Ld )] / cosh2 (sd) J

D IS P E R S IO N  S P E C T R A  O F  M O D E S  
O F  N O N C O L L I N E A R  E L E C T R O A C O U S T I C  

I N T E R F A C I A L  W AVES 
O F  A  D Y N A M I C  S U P E R L A T T I C E  
O F  A  F E R R O E L E C T R I C  C R Y S T A L

It is reasonable to start the study of spectra of the 
partial EIWs of a dynamic superlattice with the case 
x =  n/d, when the electroacoustic oscillations of DWs 
distant from one another by a lattice period are 
inphase. One can see from Eq . (17) that the results 
for this case are identical to those for x =  0 and x = 
—n/d. Another feature is that the transition to the 
case x =  —n/d can be implemented by inversion of 
the velocity of D W  motion: VD ^  — VD. Physically, it 
means that the dispersion spectra o f E IW  modes 
under the condition of synchronism o f the electroa
coustic oscillations of DWs are independent o f the
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chosen direction of D W  motion; i.e., the lattice 
reveals reciprocity of the transverse distribution of 
fields and E I W  propagation.

The values of the Bloch wavenumber x  =  ± n /d  
determine the boundaries of the first allowed band. A  
schematic of the dispersion E IW  spectra for the case 
X = ± n /d  is presented in Fig. 2. The dispersion 
branches showed by dashed lines correspond to the 
static lattice; the presence of D W  motion is reflected 
by bold solid lines. Thin straight lines represent the 
linear E IW  spectra on a single DW, static (P = 0) [14] 
or moving (P Ф 0) [9]. A  dashed straight line shows the 
linear spectrum of volume S H  waves propagating in 
a single-domain crystal.

The overall picture of the spectrum of modes of the 
partial EIWs at x  =  ±n/d outwardly resembles the pic
ture of the spectrum of modes of a stripe domain: there 
are only two modes, and the high-frequency one has a 
lower cutoff frequency (black point in the figure); the 
low-frequency mode is present over the entire fre
quency range. The change in the high-frequency 
asymptotes of the spectra due to D W  motion is the 
same as that for a single D W  [9] or a stripe domain 
[10]. However, there are principle distinctions between 
the spectra of stripe domain modes and the spectra in 
Fig. 2.

First, as the velocity of D W  motion increases, the 
cutoff point of the high-frequency mode in Fig. 2 
shifts, as the arrow indicates, along the spectrum of 
volume waves towards lower frequencies, i.e., in the 
opposite direction as compared to the case of a moving 
stripe domain. A  consequence of this behavior is the 
limiting situation at p ^  1, when the high- and low- 
frequency branches merge with the linear spectrum of 
volume waves (the Marfeld—Turnois asymptote at 
P ^  1 approaches the volume wave spectrum) and the 
region of E IW  existence degenerates into the spectral 
line. This degeneracy of the E IW  into an ordinary 
shear wave propagating in the direction of D W  motion 
corresponds to “ tripping” the shear waves and the 
moving DWs due to the absence of piezoelectric polar
ization charges [9]. This result is quite predictable, 
since the number of DWs moving at the velocity of 
sound is of no importance, as in the case of the super
lattice.

Second, the low-frequency branch exhibits a quali
tatively different character of dispersion. Indeed, at 
low frequencies the dispersion branch for a stripe 
domain occurs below the spectrum of volume waves 
but above the Marfeld—Turnois mode asymptote. In 
other words, the phase velocity of the wave lies 
between the values of the E I W  velocity on a single 
D W  and the velocity of a volume S H  wave. Mean
while, in the lattice spectrum the dispersion branch 
of the low-frequency mode lies completely below the 
Marfeld—Turnois asymptote. This type of EIWs for a 
static lattice was mentioned previously in [2], where

Fig. 2. General view of the mode spectrum of the partial 
EIW for the lattice with the Bloch wavenumbers x = ±n/d.

the resemblance of their dispersion to the dispersion 
of flexural modes in thin planes was pointed out.

Third, the mode spectra of a stripe domain corre
spond to different types of the transverse distribution 
of shear displacements, including symmetric for the 
low-frequency branch (symmetric mode) and anti
symmetric for the high-frequency branch (antisym
metric mode). In the case of a lattice, the calcula
tions using formulas (13) with the dispersion E IW  
indices obtained from Eq . (15) show that the distri
butions of the shear displacements across the unit 
cell are qualitatively similar for both modes and cor
respond mainly to the symmetric type. Obviously, 
the D W  motion causes the symmetry break. Figure 1 
demonstrates such a quasi-symmetric profile shown, 
for better illustration, in a strongly emphasized 
form.

When there are only two modes at x  =  ±n/d, the 
degenerated case of E IW  propagation takes place, i.e., 
there is no splitting of modes upon induced D W  
motion. Possibility of this splitting in other cases was 
analytically demonstrated in the previous section by 
the example of the lattice with x  =  n/(2d). The shape 
of the partial E IW  mode spectrum for the lattice with 
this Bloch wavenumber calculated from Eq . (19) is 
presented in Fig. 3.

As was mentioned above, in the static case Eq . (19) 
has only one root. The corresponding mode is shown 
in Fig. 3 by a dashed curve and is purely antisymmet
ric, judging by the character of the transverse distribu
tion of the shear displacements. This naturally follows 
from the fact that, at x  =  n/(2d), the electroacoustic 
oscillations on DWs distant by a lattice period are 
antiphase. The absence of a symmetric mode is
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Fig. 3. Spectrum of the partial EIW modes for the Bloch 
wavenumber x = n/(2d): 1 and 2  are the branches split by 
DW motion.

Fig. 4. Spectrum of the partial EIW modes for the arbitrary 
Bloch wavenumber x *■ n/(2d) and x *■ n/d: 1,2 and 3, 4 are 
the pair branches split by DW motion.

explained by piezoelectric inconsistency of the symmet
rically distributed shear displacements and the resulting 
stresses in an internal D W  of the unit cell due to the alter
ation of a sign of the piezoelectric modulus [11].

Motion of DWs splits the dashed branch of the anti
symmetric mode into two branches 1  and 2  shown in 
Fig. 3 by bold solid lines. In the high-frequency limit, 
the spectra of the split modes are asymptotically drawn 
to the changed (turned toward the dashed line of the 
volume wave spectrum) Marfeld—Turnois asymptote. 
With the change in the direction of D W  motion (alter
ation of signs in Eq . (19) from ± to + ) , branches 1

and 2  in Fig. 3 change places. Clearly, this does not 
break the overall picture of the spectrum. In this 
sense, the conclusion on reciprocity of the transverse 
field distribution and E I W  propagation revealed by 
the lattice of moving DWs retains its validity in the 
considered variant.

One can see from Eq . (19) that the effect of the 
inversion of the velocity of D W  motion on the spec
trum of modes of the partial E IW  is equivalent to that 
of the transformation x ^  — X. Thus, the picture of the 
spectra in Fig. 3 includes the case x = —n/(2d). This 
conclusion is general and can be extended to any case 
X *  n/(2d). The most typical situation of the transfor
mation of the partial E IW  mode spectrum by the lat
tice of moving DWs is that for x  *  n/(2d) in the static 
case there are already two modes (dashed curves in 
Fig. 4) instead of the only mode split into pairs by 
motion, as in Fig. 3. The transformations VD ^  — VD or 
X ^  —x yield intrapair rearrangement of the split 
modes 1 o  2 and 3 o  4 (solid curves), which validates 
general independence of spectra representation on the 
direction of D W  motion.

Concerning the structure of the transverse distribu
tion of the shear displacements for the split branches, 
one should pay attention on its noticeable closeness to 
the transverse distribution for a generative mode of a 
partial E IW  of the static lattice. In the general case, the 
generative mode reveals mixed signs of symmetry-anti
symmetry occurring depending on closeness of value 
2xd to values 2 n  or n. If  the situation corresponds to that 
illustrated in Fig. 3, the transverse distributions of the 
displacements for both split modes slightly differ from a 
strictly symmetric form at high velocities of D W  motion 
(P > 0.7) and from one another.

Figure 5 depicts the dependence of the frequency 
of an electroacoustic wave on the Bloch wavenumber 
for some fixed wavenumber. The dispersion curves 
shown by dashed lines correspond to the static lattice; 
in the presence of D W  motion, they are shown by solid 
lines. The low-frequency group of curves 1 corre
sponds just to the EIWs. The high-frequency group of 
curves 2  separated from group 1  by the band gap cor
responds to the first allowed band for the electroacous
tic waves of volume propagation [17] (presented for 
comparison). There is the only allowed band for the 
EIWs; it lies below all the allowed bands of the volume 
propagation spectra. In both cases, D W  motion splits 
the spectrum of any electroacoustic wave of the static 
lattice into pairs (spectral doublet). In the general case 
x *  n/(2d) and x *  п/d for the EIWs at the chosen 
Bloch number and wave vector, we have four branches, 
as not one but two modes corresponding to different 
symmetries of the distribution of the shear displace-

1ments across the cell undergo pair splitting. One can

1 For the regions not close to x = n/(2d) and x = п/d, two solid 
curves lying above in frequency correspond to the quasi-sym
metric distribution.
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Fig. 5. Dependence of the frequency of an electroacoustic 
wave on the Bloch wavenumber at a fixed k|| value.

see from Fig. 5 that, although the values of the Bloch 
number x = ± n /d  determine the boundaries of the first 
allowed band, they do not determine the frequency 
region of location of the dispersion branches of all the 
rest of the partial EIW s. There exist intermediate 
Bloch wavenumbers for which the frequency at a fixed 
wavenumber lies above or below as compared to the 
case of the Bloch wavenumber x = ±n/d. This feature 
is more pronounced for the dynamic lattice.

C O N C L U S I O N S
The dispersion properties of the noncollinear ElWs 

of the dynamic superlattice of the equidistant uni
formly moving 180° DWs of ferroelectric crystals have 
been described. It has been shown that due to D W  
motion the partial Bloch spectra of modes of the inter
facial electroacoustic waves that are not related to the 
boundaries of the first allowed band undergo pair split
ting into high- and low-frequency branches, changing

places during the inversion of the D W  velocity. The 
partial modes setting the limits of the allowed band for 
the EIWs are not subjected to the mentioned splitting, 
invariant to the inversion of the velocity of D W  
motion, and transformed by D W  motion in the high- 
frequency asymptote similarly to the waves on individ
ual domain walls.
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