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A b s t r a c t — A  t w o - f i e l d  a n d  a  v e r s i o n  o f  a  f o u r - f i e l d  m i c r o p o l a r  m o d e s  o f  a  m e d i u m  w i t h  a  m i c r o s t r u c t u r e  a r e  

c o n s t r u c t e d .  A  s t r u c t u r a l  m o d e l  o f  t h e  C o s s e r a t  l a t t i c e  t a k i n g  i n t o  a c c o u n t  b o t h  t r a n s l a t i o n a l  a n d  r o t a t i o n a l  

d e g r e e s  o f  f r e e d o m  o f  t h e  m e d i u m  e l e m e n t s  a n d  c o r r e s p o n d i n g  w a v e s  i s  u s e d  a s  a  b a s i c  o n e .  T h e  m o d e l s  a r e  

c o n s t r u c t e d  b a s e d  o n  a  o n e - d i m e n s i o n a l  d o u b l i n g  o f  t h e  u n i t  c e l l  a n d  a  c o r r e s p o n d i n g  i n c r e a s e  i n  t h e  n u m b e r  

o f  f i e l d s  f o r  d e f o r m a t i o n  d e s c r i p t i o n .  B a s e d  o n  c o m p a r i s o n  w i t h  a  d i s c r e t e ,  s i n g l e - f i e l d ,  a n d  f o u r - f i e l d  

m i c r o p o l a r  m o d e l s ,  i t  i s  s h o w n  t h a t  a  m u l t i f i e l d  a p p r o a c h  m a k e s  i t  p o s s i b l e  t o  c o n s t r u c t  a  s y s t e m  o f  m o d e l s  

t h a t  d e s c r i b e  d y n a m i c s  o f  t h e  b o d i e s  w i t h  a  m i c r o s t r u c t u r e  t a k i n g  i n t o  a c c o u n t  n o t  o n l y  l o n g - w a v e ,  b u t  a l s o  

s h o r t - w a v e ,  d e f o r m a t i o n s .
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I N T R O D U C T I O N
Models of the classical mechanics of continuum 

media have been sufficiently developed and are widely 
and successfully used for the solution of practical 
problems. A  well-developed and verified system of 
interconnected continual theories of physics and 
mechanics has already been formed. Models of them, 
a mathematical apparatus, and numerical and analyt­
ical methods have been developed.

However, there are number of effects related to 
the structure that classical models do not describe or 
yield a substantial error for during description. 
Models of generalized mechanics are being devel­
oped to take them into account. A  generalized the­
ory began intensively developing in the 1950s— 
1960s, and the key results were summarized at the 
historical I U T A M  Symposium on the generalized 
Cosserat continuum and the continuum theory of 
dislocations with applications and in the proceed­
ings of this symposium [1]. The problems of classical 
continuum theories are solved in the generalized 
mechanics by correcting their basic hypotheses, 
models, and notions.

A t  present, the models of Cosserat bodies and 
the micropolar theory [2, 3] are well developed and 
are widely used for modeling o f bodies the deforma­
tion description of which necessitates taking into 
account of rotations of their structural elements. 
Since the beginning of the 1990s, models of high- 
gradient mechanics which take into account higher 
gradient field as compared to the models of classical 
mechanics have begun actively being developed [4, 
5]. However, the problem o f developing a physical 
theory that takes into account short-wave deforma­
tions within the framework o f the generalized con­
tinuum theory is still relevant. The present study

gives the development of a multifield approach [6— 
10] within the framework o f which this problem 
seems to find a solution.

Another challenging theory lies in developing com­
plex models based on the ideas and approaches of dif­
ferent theories of the generalized mechanics for con­
structing adequate models describing with high accu­
racy the effects of the bodies with a microstructure 
which are of interest to us.

D I S C R E T E  A N D  S I N G L E - F I E L D  
M I C R O P O L A R  T H E O R Y

Let us consider a square Cosserat lattice (Fig. 1a) 
whose kinematics should be described taking into 
account not only translational displacements un, vn, 
but also rotations фп of its elements as a basic one. The 
interaction of the elements к  and m is described using 
the potential [11]

+ 1 Gk;  m(фт -  Фк)2 ,

where rk, m characterizes the distance between the ele­
ments and the constants K m , K / m , and Gk’ m deter­
mine resistance to relative longitudinal and transverse 
displacements and element rotations. A  spring-type
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Fig. 1. A  square Cosserat lattice (a), unit cell. Notation, macrocells from two and four particles (b)—(d).
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model is used for diagonal connectives assuming that
K  =  Gdr  =  0.

The potential energy of type (1) is a discrete analog 
of the potential energy accepted in the micropolar the­
ory of elasticity [3]. It is used in discrete models of 
granulated media [11, 12] for modeling molecular 
crystals, material and constructions with beam-type 
connections which resist to rotation of the elements. 
Modeling of the crystal dynamics based of a micro­
structure lattice model taking into account the finite 
size and rotation of the particles with the potential 
which is an analog of the potential of type (1) [13] is 
considered in [14—16]. The microstructure parame­
ters taken from the experimental data for a number of 
crystals based on a model with a square lattice were 
obtained in [15].

The kinetic energy of the к  th element is taken in 
the form

к  1  . 2 1  - 2 1 . 2
E kin =  2  M u k  +  2  M  Vk  +  2  J(P к '

The equations of motion of the element (n, m) 
constructed based on the Lagrangian

MUn, m = KnKxUn, m + Ks[&yyUn> m + 1 h Ауфп, m) 

+ 2K n (AUn, m + Axyv n, m) ,

M  v n, m = K nAyy v n, m + Ks( A xx v n, m -  1 hA xФп, m)

+ 2K n (A  v n, m + AxyUn, m) ,

J фn, m = -  4 K^  (А ххФп, m + АууФп, m)

+ 1 Ksh (A x v n, m -  AyUn, m -  4^ n ,  m ) ,

where the following notation is used 
A w = w -i — w 1x n, m n + 1, m n -  1, m’

are

(2)
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Д w = w . — 2 w + w 1L-^xx'v n, m n + 1, m ^ fvn, m 1 n — 1, m’
Д w = w 1 — w 1n, m fv n, m + 1 fv n, m — 1’

Д w = w 1 — 2 w + w 1yy n, m fv n, m + 1 ^ fvn, m 1 fv n, m — 1’
Д wn, m = wn + 1, m + 1 + wn + 1, m — 1

— 4  w + w 1 1 + w 1 1^ 'rn, m 1 'rn — 1, m + 1 1 n — 1, m — 1’
Д w = w 1 1 — w 1 1“-^xy" n, m n + 1, m + 1 n + 1, m — 1

— wn — 1, m + 1 + wn — 1, m — 1 ■
Expansion of displacements and rotations into the 

Taylor’s series, with the derivatives not higher than the 
second order being taken into account, yields analogs 
of the equations of the micropolar elasticity theory,

P ^ 1] = (Kn + K n) UXX 

+ (K  + K n) uyy + 2 KnVxy] + k s ф У1] ,

ing into account derivatives not higher than those of 
the second order.

A  two-field model is constructed based on a mac­
rocell including two unit cells (Fig. 1b). When new 
functions Uhl =  (u[2] + m[1])/2, U121 =  (u[2] — u[11)/2, 
and analogous functions V s1, Фм, s  =  1,2 are intro­
duced, the six connected equations split into two 
unconnected sets. The first set is a set of micropolar 
theory equations (3). The second set has the form

M U 2  = K nh 2 UX — Ks[ h \  Uy2y] + ф У2] ) + 4 U 2] ]

—Kn[ h2( U?} + Uyy] + 2 Vxy]) + 4 U 2] ]  

m V 2] = — Kn ( h  Vy2y + 4 V 2]) + Ksh 2( VX  — ф [2] )

—K  [ и 2 ( vX2J + V y  + 2 U y ) + 4 F [2] ]

j ф <2) = o r [ h  (Ф ХХ — ф УУ ) — 4 ф[2] J2L d2b

^  = (K s + ^ ) ^  (3)
+ (K n  + Kn) v y  + 2K n u X l ] — K s  ф [х ],

j  ф[,1] = (Gr — K h  / 4 )(ФХХ] + ф УУ] )

+ K s ( v y  — U / ] — 2Ф[ 1]) ,
where the denominations p =  M/h2 and j  =  J/h2 are 
introduced and the index [1] is additionally used to 
note that only one vector field with the components 
U[11(x, y, t), V[11(x, y, t), and Ф[11(х, y, t) is used to 
describe medium deformation when constructing the 
continuum theory.

A  T W O - F I E L D  M O D E L  A N D  A  V E R S I O N  
O F  A  F O U R - F I E L D  M O D E L

Single-field model (3) was constructed based on 
dynamic equations (2) for a periodicity cell of a mini­
mal size using one vector-function with the same 
degrees of freedom as those is a vector of generalized 
particle displacements. Note that there is a nonobvi­
ous assumption of a single-field theory. Rejection of 
this assumption leads to multifield models.

A n  N-field model is constructed based on a macro­
cell including N  unit cells. A n  additional index s  =
1, N  is introduced to mark the components o f the vec­
tor of macrocell particle displacements un> m  (t),
V s m  (t), and ^ s m  (t). Then we write discrete equations 
of motion for the macrocell particles. The deforma­
tion of the system in the N-field model is described 
with Nvector-functions with the components u[s1(x, y, t),
v [s1(x, y , t), and фм(х, y , t), s  =  1, N . N ow  we con­
struct 3 N  equations of motion of the N-field model 
with the help of expansion into the Taylor’s series tak­

+ K h 1 2
h 2 (— фХХ] + фУ2у] ) + V2  + U;2] — ф[2]

The authors o f[17] used a macrocell with four par­
ticles shown in Fig. 1c to construct a four-field model. 
In the present work, we consider the macrocell shown 
in Fig. 1d. By introducing new field functions

U 1] = 1  ( u[ 4] + u[3] + u[2] + u[ 1]) ,
4

U 3] = 1  ( u[3] — u[ 1]) ,
4

U 2] = I  ( u[ 4] — u[3] + u[2] — u[ 1]) ,
4

U 4] = - ( u[4] — u[2])
4

and analogous functions Vм, Фм, s  =  1,4 the set of 
12 equations of a four-field models splits into three 
equations of a single-field micropolar theory (3), three 
auxiliary equations (4) of a two-field model, and a 
connected set of six equations

+ K s - h3
2

m U 3] = K n h 2Ux X  

ф УУ] + h ( 2 Uy3] + Ф[ 3]) — 2  U 4 ]

+ 2 K , [ h( U 2] + vX3]) — U 4] ] ,

MVtt3] = 2Kn( hVy3] — V 4]) + K h  ( VxX — фХ4])
+ 2 Kn [ h ( uX3] + Vy3]) — V 4] ] ,

JФt[t3] = Gr ( И2ф Х4х] + 2Иф У3] — 2 ф[4])
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+ K h -  U 3] + h ( Vx4] - 3 Ф[ 4])

and

+ K

-  1 h2( Ц ?  + Ф̂ 3̂) - 1  h3 ФХ4'

M u t4  = K„h2 uxx

- 1 h Ф™ + h (-2  U 4] -  Ф[4]) -  2 U 3]

+ 2K n[-  U 3  -  h( U4  + V? ]) ] , 

m V 4  = 2 K n(-h V y4] -  V 3]) + Ksh \ VX3X] -  ф Х3]) 
+ 2Kf[ - h (  u j ] + v; ] ) -  ^ 3] ] ,

M 4] = Gr(h 2ФХХ -  2hФ:4] -  2Ф[3])

+ K h U 4] + h ( Vx3] - 3 Ф[ 3])

(6)

+ -  h 2 ( u 4]+ ф :4] ) - 1 h3 ф хх2 yy y 4 XX

A  C O M P A R A T I V E  A N A L Y S IS  O F  M O D E L S
A  comparative analysis o f models will be performed 

by construction and comparing dynamic solutions of 
the form

JTr '(® * - k K x - m K y)wk, m  ( t) = We y (7)

where wk, m(t) and W  are the vectors with the compo­
nents uK m(t), vk, m(t), Фк, m(t) and U , V , Ф , respec­
tively; Kx =  kxh, Ky =  kyh; kx, ky are the wave numbers; 
and ю is the frequency.

Substitution of Eqs. (7) into dynamics equations (2) 
yields a set of homogeneous algebraic equations

(an + Мю2) U + a u  V  + a 131Ф = 0,
a12 U + (a 2 2  + М ю 2) V  + a231Ф = 0, (8)

a13U  + a23 V  + ( a 33 + /ю2) i Ф = 0,
with the components

an = 2( cos K x  -  1) K n  + 2( cos K y  -  1) K s

+ 2( cos K x  cos K y  -  1) K l ,

a 12 = -2  K l  sin K x  sin K y , 

a13 = -h K s  sin K y , (9)

a22 = a n ( x  о  y ), a23 = hK s  sin K x ,

a 33 = - (  cos Kx + cos Ky + 2 )h2 Ks/  2 
+ 2 ( cos Kx + cos Ky -  2) Gr.

The condition at which nontrivial solutions exist 
is a zero determinant of set (8). It yields dispersion 
equations which determine three dispersion surfaces 
ю =  ю ( ^ , Ky) which are considered in the range of 
0 < Kx < n, 0 < Ky < n.

The dispersion relations and the surfaces of contin­
uum models are constructed for continuum analogs of 
solutions to Eq. (7) of the form

»*■' (x, y, t) = W ’ 1 e - kxx - kyr' , (10)

where W[’](x, y, t) and W ^  are the vectors with the 
components U[’ ](x, y, t), F [’1(x, y, t), Ф[’](х , y, t), and
U ^  , V ’ ] , Ф[’ ] , respectively.

Substitution of Eq . (10) to equations of single-field 
micropolar model (3) yields a set of equations of 
type (8) where the matrix components are expansions 
of components (9) into the Taylor’ s series at the 
point (Kx, Ky) =  (0,0) taking into account the degrees 
not higher than those of the second order. Thus, three 
corresponding dispersion surfaces of a single-field 
micropolar model determined in the range of 0 < Kx < n, 
0 < Ky < n  approximate dispersion surfaces o f the dis­
crete system at the point (Kx, Ky) =  (0,0) and, thus, 
there is a good agreement between discrete (2) and sin­
gle-field (3) models in the range of long waves [11]. 
For short waves, a single-field micropolar model gives 
a substantial error and is inapplicable.

Substitution of the solution of type (10) into six 
equations of two-field model (3) and (4) gives six dis­
persion surfaces considered in the range of 0 < Kx < П, 
0 < Ky < я/2. Three from the dispersion surfaces corre­
sponding to single-field model equations (3) provides 
for approximation of the dispersion surfaces of the dis­
crete system in the long-wave range. Using a compar­
ative analysis it can be shown that the dispersion sur­
faces corresponding to auxiliary equation (4) of a 
two-field model determined in the range 0 < Kx < П, 
0 < Ky < я/2 after reflection with respect to the plane 
Ky =  n/2 to the region 0 < Kx < n, n/2 < Ky < n approx­
imate dispersion surfaces of the discrete system and 
short-wave ranges at the point (Kx, Ky) =  (0, n).

Four groups of the surfaces of a four-field model 
are determined in the range 0 < Kx < n, 0 < Ky < n/4. 
Three dispersion surfaces corresponding to single­
field model equations (3) approximate the dispersion 
surfaces of the discrete system in the long-wave range. 
Three dispersion surfaces corresponding to Eqs. (4) 
after reflection with respect to the plane Ky =  n/2 
approximate the dispersion surfaces of the discrete 
model in the region 0 < Kx < n, 3n/4 < Ky < n at the 
point (Kx, Ky) =  (0, n). Six dispersion surfaces corre­
sponding to Eqs. (5) and (6) of a four-field model after 
reflection, and transfer approximate the dispersion
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Fig. 2. The regions where the relative error of approximation of the dispersion surfaces of microrotations of a square Cosserat lat­
tice by the dispersion surfaces of single-field (a), two-field (b), and four-field (c) models obtained in [17] (c) and in the present 
study (d) does not exceed 2.5%.

surfaces of the discrete model at the point (Kx, Ky) = 
(0, п/2) in the ranges 0 < Kx < п, п/2 < Ky < 3п/4 and 
0 < Kx < п, п/4 < Ky < п/2.

Figures 2 and 3 illustrate the performed analysis. 
Without losing community, one can fix, for example, 
Kn, M , and h. During the calculations the values of 
other parameters which are considered dependent
are assumed to be Ks =  (1/3)Kn, Gr =  (1/3)Knh2, K  =
0.74Kn, J  =  (1/8)Mh2, which corresponds, e.g., to the 
case of a granulated media. Such parameters were used 
for the comparison of the dispersion curves o f dis­
crete (2) and single-field continuum (3) models in [11]. 
In  [1 1 ], the comparison of continuum model equa­
tions (3) and phenomenological micropolar equa­
tions [3] yielded common correlations between the 
parameters of discrete (2) and micropolar models.

Then, assuming that the constants of micropolar 
equations for a granulated media are known from a 
macroexperiment, the microstructure parameters are 
found.

Figure 2a shows the regions in the vicinity o f the 
points (Kx, Ky) =  (0,0) where the relative error 
|(®cont — rodiscr)/rodiscr I ofthe approximation ofthe wave 
surfaces of the discrete system microrotations 
®discr(Kx, Ky) by the corresponding dispersion surface 
№cont(Kx, Ky) of a single-field model does not exceed 
2.5%. Figure 2b additionally shows the region in the 
vicinity of the point (Kx, Ky) =  (0, п) where such accu­
racy for the corresponding short waves is ensured by a 
two-field model. Figures 2c and 2d reflect distinctions 
of four-field models in [17] and those in the present 
paper. The model of [17] refines single-field micropo­
lar model (3) during modeling waves and deformations
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п 0

Fig. 3. Dispersion curves of a square Cosserat lattice in the section of dispersion surfaces by the plane Kx = 0 (solid lines) and their 
approximations by the dispersion curves of single-field (a), two-field (b), and four-field (c) models (dashed lines).

in highly-symmetric direction for the short waves with 
the wave numbers in the regions (n, 0), (0, n), and 
(я, я). Four-field model (3)—(6) gives refinement only 
for plane waves and deformations with Kx =  0. H ow ­
ever, contrary to the model of [17], a micropolar 
model is refined only for the waves with the wavenum­
ber not only near (0, n), but also (0, n/2). This refine­
ment can be important when modeling thin interlayers 
and frequency filters.

A  solid line in Fig. 3 shows dimensionless disper­
sion curves ю = 0)*/M / K n in the cross section Kx =  0 
of the dispersion surfaces of a discrete system, and 
dashed lines show their approximation by the disper­
sion curves of a single-field (a), a two-field (b), and a 
four-field (c) model. A  single-field model provides a 
good accuracy of approximation of the dispersion 
curves of the discrete system in the long-wave range 
Ky »  0, however, its accuracy for short waves is substan­
tial. The dispersion curves of a two-field model in the 
range of 0 < Ky < n/2 coincide with the dispersion 
curves of a single-field model. A  two-field model is 
accurate in the short-wave range for Ky «  n. It is appar­
ent in Fig. 3 that the maximal error of a two-field 
model is observed at the point Ky =  n/2. A  four-field 
model coincides with a two-field one at the intervals of 
0 < Ky < п/4, 3n/4 < Ky < n and refines it in the middle 
wavelengths for Ky »  n/2.

A N A LY S IS  O F  O N E - D I M E N S I O N A L  D Y N A M IC S
A  comparative analysis of the models taking into 

account those damped over the spatial variable can be

performed for one-dimensional solution varying in 
highly symmetric directions. In the case of diagonal 
directions such analysis of the models is given in [13, 
18]. Solutions and a corresponding analysis are of 
interest when studying edge effects in thin layers and 
constructing frequency filters and in nonlinear prob­
lems during a linear analysis of, e.g., discrete breathers.

The present work gives the analysis of constructing 
models for one-dimensional waves which do not 
change along the OX  axis. The dispersion relations for 
this case obtained from Eqs. (8), (9) by substituting 
Kx =  0 split and, using denominations Q  = ю2, Z  = 
2(l — cosKy) can be written as

M Q  = (Kn + K n) Z ,  (11)

b 11Z  + 2 b 12 Z Q  + b 22 Q  + b 1Z  + b 2 Q  = 0, (12)
where

b 11 = (Gr -  h 2Kn/ 4)Ks + GrKn, b22 = M J,

2 b 12 = -  ( Gr -  h 2 K  / 4 ) M  -  ( K  + Kn ) J,

b 1 = (K  + 2 K n) Ksh 2, b 2 = -  2 M K sh2.
Let us consider the solution of type (7) which takes 
into account the solutions localized over the spatial 
variable assuming that iKy =  K Re + K Im.

Straight line (11) intersects the straight line Z  =  4 at 
Q | Z M 4 = 4(Kn + Kn )/M . It determines the branch of 
harmonic solutions for the frequencies in the interval 
0 < Q  < Q  |Z M 4 and the branch of damped short-wave
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solutions for the high frequencies Q  > Q |Z = 4. From
2the condition D  =  bn b22 — b l2  > 0, we obtain that 

curve (12) is elliptical in the region

J K  + J  - J J  + 1/4 < Gr < J K  + J  + J J  + 1/4

of the dimensionless parameters Gr =  Gr/K sh2, K n =
K n /K s, and J  =  J /M h 2 and hyperbolic beyond this 
region.

Curve (12) intersects the straight lines Z  =  0 and 
Z  =  4 at the points Q  |Z = 0 =  0, Q  |Z = 0 =  2Ksh2/ J  and
Q  | Z = 4 =  4(Ks + K n )/M , Q  | Z = 4 =  (4Gr + K sh2)/J. The
sections of curve (12) connecting these points in the 
interval 0 < Z  < 4 determine two branches of harmonic 
solutions. There is always sections of curve (12) deter­
mined in the range Z  < 0 and Z  > 4 which determine 
the branches o f dispersion curves in the planes K Im =  0 
and K Im =  n  corresponding to monotonously varying 
solutions and short-wave localized ones. Note that the 
dispersion curves determined for K Re Ф 0, K Im Ф 0 cor­
respond to the frequencies Q  for which there are no 
real values o fZ. The structure medium is a filter for the 
waves in the regions where there are no harmonic solu­
tions and only spatially localized solutions K Re Ф 0 are 
implemented. The boundaries of the frequency filter 
zone are determined by the values of the minima 
(maxima) of the dispersion curves of harmonic solu­
tions which are reached either at the boundaries at the
frequencies
0 < KIm< П.

\z  = 0 , V Q | Z = 4 or inside the region

In the problems of mechanics, the solutions in the 
range of low frequencies Q  ~ 0 are of particular inter­
est. The points of intersection with the axis Q  =  0 
determine static solutions. Curve (12) intersects the 
axis Q  =  0 at the point Z  =  0, which determines the lin­
ear part of a static solution. In case of positive param­
eter values, there are no points of intersection of the 
Q  =  0 axis in the interval 0 < Z  < 4. This means that at 
such parameters the system is stable. The second point 
Z  n = о =  —b \/b n  of the intersection of the axis Q  =  0 
is in the region Z  < 0 or Z  > 4. Monotonously decreas­
ing effects are implemented in the systems of the first 
type, and short-wave edge effects are implemented in 
the systems o f the second type. The parameter spaces 
o f different types o f systems are separated by the
curve Gr =  K„/4(1 + K n).

The analysis shows that single-field micropolar 
model (3) provides for a good approximation of the 
branches of harmonic and monotonously varying 
localized solutions of the discrete system in the planes
K Re =  0 and K Im =  0 for the frequencies ю ~ J Q \Z = 0 
in the vicinity of the point (KIm, K Re) =  (0, 0). A  single­

Gr

Fig. 4. The space of dimensionless parameters and the 
curves separating the regions with different types of disper­
sion curves and edge effects.

field model describes monotonously damping (KIm =  0) 
static edge effects with weak localization (KRe ~ 0).

Only monotonously damping edge effects are 
implemented in a lattice with square cells without
diagonal connections K n =  0. Note that as in [13] the 
systems where short-wave edge effects are realized can 
be constructed based on a structural model of the 
material with finite particle sizes [14—16, 19]. In this 
case a single-field micropolar model is inapplicable.

A  two-field model contains Eqs. (3) of a single­
field model and possesses its properties for long waves. 
Equations (4) of a two-field micropolar model provide 
for approximation of the branches of harmonic and 
short-wave localized solutions in the planes K Re =  0
and K Im =  n  for the frequencies ю ~ J Q  \Z =4 in the 
vicinity of the point (KIm, K Re) =  (я, 0). Thus, a two-
field model gives exact values of V Q  | Z = 0 and V Q  | Z = 4 
which determine the boundaries of the frequency filter 
zone of a discrete system in case the minimum (maxi­
mum) of the dispersion curves of harmonic solutions is 
reached at these values (Fig. 5b). I f  the minima (max­
ima) are in the interval 0 < K Im < n  (Fig. 5a) four-field 
model (3)—(6) can be used to refine a two-field model 
in determining the frequency filter boundaries. In 
addition, a two-field model, contrary to a single-field 
one, reflects short-wave (KIm =  n)  static edge effects 
with weak localization (KRe ~ 0).

The performed analysis is demonstrated by Figs. 4
and 5. The space of dimensionless parameters Gr , K n 
to which curves (12) of an elliptical type for the lattices 
with J  =  1/8 correspond is shown in Fig. 4 by dashed 
lines. A  solid line shows the curve which separates the 
parameters of the systems where monotonously vary­
ing and short-wave static edge effects determined by 
the points of intersection of the dispersion curves with 
the plane ю =  0 (marked on the axes ю =  0 with cir­
cles) are implemented. Figures 5a and 5b represent the 
dispersion curves in the planes K Im =  0, KRe =  0, and 
K Im =  n  constructed for a discrete system and approx-
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K R e  K I m  K R e

Fig. 5. Planes KIm = 0, KRe = 0, and KIm = n. The disper­
sion curves of a discrete system and their approximations 
by the curves of a two-field model (solid and dashed lines, 
respectively) constructed for the parameters marked with 
points (a) and (b) in Fig. 4.

imating their dispersion curves of a two-field model 
(solid and dashed lines, respectively). Two qualita­
tively different types of dispersion curves and edge
effects for the dimensionless parameters Gr =  0.025,
K  = 3.5 and Gr =  0.65, K  = 2.5. marked in Fig. 4 
with the points (a) and (b) are exemplified.

C O N C L U S I O N S
The present work continues and develops studies 

[17—19] devoted to the development of the multifield 
theory of the Cosserat media.

The models were constructed based on the struc­
tural approach. This approach was effectively imple­
mented when constructing dynamic theories in the 
solid state physics [20] and is useful for development 
and practical interpretation of phenomenological 
models. The Cosserat lattice where, contrary to classi­
cal lattices, rotations of structural elements are taken 
into account is used in the present study as a basic one.

A  single-field version of model (3) constructed 
based on a unit cell is an analog of the equations of the 
micropolar elasticity theory. A  high-gradient version

of a single-field micropolar model which takes into 
account the fourth-order derivatives over spatial vari­
ables was constructed in [15, 18]. The development of 
the elasticity theory models of complex lattices taking 
into account momentary interactions at a microlevel is 
presented in [21]. The authors of [12] offer a nonlocal 
version of the Cosserat model where, contrary to a 
conventional micropolar model, the second deriva­
tives of the rotation field are absent in the dynamic 
equation for rotations.

The system of the considered models of the 
Cosserat media illustrates the idea that there should be 
a system of models with different levels of complexity 
in the mechanics of media with a microstructure, 
which will make it possible to use during the investiga­
tions the most elementary and convenient models, 
which, however, adequately reflect the analyzed 
effects.

The problem of accounting in the model of short­
wave effects based on clear physical assumptions is 
eficiently used in the multifield theory. Abstaining 
from an attempt to describe deformations of the sys­
tem with one field based on a unit cell, introduction of 
macrocells into consideration, and an increase in the 
number of the fields used to describe system deforma­
tions allows constructing a hierarchic system of mod­
els which describe dynamics of a structural system 
with the required accuracy taking into account both 
long-wave and short-wave deformations.

In the present study, the models are constructed 
based on a combination of approaches of the micropo­
lar and multifield theories that makes it possible to 
take into account rotational degrees of freedom of the 
medium elements and short-wave deformations. Note 
that the constructed continuum models do not 
describe a discrete system dispersion of one-dimen­
sional waves in an elementary chain described by dis­
persion equation (11). It is possible to refine the model 
additionally applying the approaches of gradient 
mechanics taking into account the higher-order field 
derivatives. When modeling the lattices with complex 
cells that requires taking into account internal defor­
mations of unit cells, it seems interesting to consider a 
combination of the approaches of the micromorph 
and multifield theories.
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