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Abstract— A  n o n l i n e a r  t h e o r y  o f  p r o p a g a t i n g  p e r i o d i c  a n d  n o n l i n e a r  s o l i t a r y  w a v e s  ( l i k e  k i n k s  a n d  s o l i t o n s )  

r e l a t e d  t o  t h e  m o t i o n  o f  d e f e c t s  i n  c r y s t a l s  a n d  o f  s p e c i f i c  p e r i o d i c  w a v e s  i n t o  w h i c h  t h e  f o r m e r  o n e s  t r a n s f o r m  

i n  t h e  f i e l d  o f  t h e  c o m p r e s s i o n  s t r e s s  w a s  d e v e l o p e d .  T h e  r o l e  o f  i n t e n s e  t e n s i o n  s t r e s s  l e a d i n g  t o  t h e  h e a v y  

s t r u c t u r a l  r e a r r a n g e m e n t  o f  t h e  c r y s t a l  a s  a  r e s u l t  o f  t h e  e f f e c t  o f  t h e  e x t e r n a l  s t r e s s  o n  t h e  i n t e r a t o m i c  p o t e n ­

t i a l  b a r r i e r s  w a s  t a k e n  i n t o  a c c o u n t  a s  w e l l .  C r y s t a l s  w i t h  a  c o m p l e x  l a t t i c e  c o n s i s t i n g  o f  t w o  s u b l a t t i c e s  w e r e  

c o n s i d e r e d .  A r b i t r a r i l y  l a r g e  d i s p l a c e m e n t s  o f  s u b l a t t i c e s  w e r e  a n a l y z e d .  T h e  n o n l i n e a r  t h e o r y  i s  b a s e d  o n  a n  

a d d i t i o n a l  e l e m e n t  o f  t h e  t r a n s l a t i o n a l  s y m m e t r y  t y p i c a l  f o r  c o m p l e x  l a t t i c e s  b u t  n o t  i n t r o d u c e d  e a r l i e r  i n  

s o l i d - s t a t e  p h y s i c s .  T h e  v a r i a t i o n a l  e q u a t i o n s  o f  m a c r o s c o p i c  a n d  m i c r o s c o p i c  d i s p l a c e m e n t s  t u r n  o u t  t o  b e  

a  n o n l i n e a r  g e n e r a l i z a t i o n  o f  t h e  l i n e a r  e q u a t i o n s  o f  a c o u s t i c  a n d  o p t i c a l  m o d e s  o b t a i n e d  b y  C a r m a n ,  B o r n ,  

a n d  H u a n g  K u n .  T h e  m i c r o s c o p i c  d i s p l a c e m e n t  f i e l d s  a r e  d e s c r i b e d  b y  t h e  n o n l i n e a r  s i n e - G o r d o n  e q u a t i o n .  

I n  t h e  o n e - d i m e n s i o n a l  c a s e ,  e x a c t  s o l u t i o n s  o f  t h e  n o n l i n e a r  e q u a t i o n s  w e r e  f o u n d  a n d  t h e i r  f e a t u r e s  w e r e  

r e v e a l e d .  I n  t h e  c a s e  o f  t w o - d i m e n s i o n a l  ( 2 + 1 )  f i e l d s ,  n e w  m e t h o d s  o f  t h e  e x a c t  s o l u t i o n s  o f  t h e  s i n e - G o r d o n  

e q u a t i o n  w e r e  d e v e l o p e d .  T h e y  d e s c r i b e  t h e  i n t e r a c t i o n  o f  t h e  n o n l i n e a r  w a v e s  w i t h  t h e  s t r u c t u r a l  i n h o m o g e ­

n e i t i e s  o f  s o l i d  s t a t e  d u e  t o  t h e  e x t e r n a l  f i e l d s  o f  s t r e s s  a n d  d e f o r m a t i o n s .
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1. G E N E R A L  E Q U A T I O N
The dynamic theory of the crystalline lattice is well 

developed at the level ofthe linear theory [1—3]. How ­
ever, its generalizations do not reach the limits of 
anharmonic approximations. A  drawback of these 
classical approaches is that small displacements are 
considered that do not move atoms out of the cell 
boundaries. This restriction does not allow one to 
describe cardinal qualitative changes of its characteris­
tics.

A t  present this approach is not completely ade­
quate to the new problems arising in the problems of 
the formation and control of the structure of new 
materials. Small changes of the internal structure 
which are predicted by the linear theory, eventually, 
simply elaborate the changes of the macroscopic 
geometries of the lattice and lead only to the renor­
malization of the material constants. The solution of 
these problems requires the introduction of essentially 
nonlinear models and a direct account of the deep 
changes of the structure of the solid state.

The universal approach starting from the remark­
able works of the French scientists E . and F. Cosserat 
[4] is based on the introduction of internal rotational 
degrees of freedom in the continuum model of the 
solid state. The multiple attempts of its implementa­
tion have shown that, in the linear theory, new effects 
are indeed predicted. The main new results are the

appearance of new modes of the optical oscillations, 
spatial-temporal dispersion of the elastic properties, 
and near-boundary effects in statics [5-8].

Transition to the essentially nonlinear equations, as 
shown in [9 -12 ], enables one to predict deep struc­
tural rearrangements, lowering of the potential barri­
ers, switching of the interatomic bonds, the appear­
ance of singular defects and other damage, and phase 
transformations. But the phenomenological theory 
has limitations. O f  course, one can introduce internal 
parameters of the microdeformations type into the 
theory, describing the change of the structure, and 
even calculate them. However, their physical sense can 
be revealed if the initial structural state of the body is 
given and the material scales of the length and time are 
introduced. This is not done in the continuum theory.

It appears that joint solution of the problem dis­
continuity and nonlinearity of the models allows one 
to formulate the new principle of the translational 
invariance of the energy. E . and F. Cosserat for the first 
time in mechanics introduced an analogous principle 
for medium with rotational degrees of freedom. In this 
work the theory of the nonlinear waves in solid state 
experiencing the cardinal rearrangement of the crys­
talline structure is developed.

The proposed theory is based on a model of the 
complex lattice consisting of two sublattices that are 
superposed (merge into one) by a shift on a constant
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Fig. 1. Complex lattice consisting of two sublattices (a), macroscopic deformation without the shift of sublattices (b), microde­
formations at twinning separation (c), and bifurcation of the structure of the unit cell at microdeformation (d).

structural vector u0, being a parameter of the complex 
lattice (Fig. 1a).

This model is well known in solid-state physics; 
however, it is elaborated in the linear and anharmonic 
approaches. In the linear local theory of the crystalline 
lattice of Carman, M . Born, and Huang Kun [1], two 
equations are obtained: for the acoustic U  and “ opti­
cal” u displacements, respectively. In the work of 
A .M . Kosevich [2], physical mechanics of the non­
ideal crystalline lattice accounting for defects was 
built. I .A . Kunin developed the linear nonlocal theory 
of the complex crystalline lattice in which the long 
range is elaborated [3].

In the local nonlinear theory proposed here the 
main attention is paid to the short-range effect 
responsible for the cardinal structural change (includ­
ing the appearance of defects and new phase) and to 
the so-called reconstruction transitions— changes of 
the symmetry class of the lattice. The transition to 
essentially nonlinear equations enables one to predict 
lowering of the potential barriers and switching of the 
interatomic bonds.

The introduction of the changes in the local 
topology by means of the internal degrees of freedom 
(fields u) to the theory turns out to be effective if the 
generalization of the linear approach is performed as 
follows. Consider the arbitrarily large displacements of 
sublattices u. The additional element of the transla­
tional symmetry typical for the complex lattices, but 
not introduced in solid-state physics earlier, is the 
basis of building the nonlinear theory. Obviously, dis­
placement of one sublattice with respect to the other 
for one period (or their integer number) up to super­
posing the sublattice with itself once again reproduces 
the structure of the complex lattice. Thus, the energy 
of the complex lattice should be a periodic function of 
the relative rigid displacement of sublattices u invari­
ant to such translation. O f  course, the classical princi­
ple of the translational symmetry leading to the invari­
ance of the lattice energy to the joint translation U  of

both  sublattices by one period o f the com plex lattice 
rem ains. Such an  approach allows one to in troduce 
new crystal param eters in  m icrom echanics, on  the 
basis o f  w hich it is possible to describe m icrom echa­
nisms o f the cardinal structural rearrangem ents o f the 
lattice. These are short-range characteristics, p o ten ­
tial barriers, typical sizes o f the structure elem ents and 
interphase boundaries, and bifurcation param eters.

T he displacem ents o f the cen te r o f  the inertia o f 
pairs o f atom s (unit cell) and their relative displace­
m ent inside the cell (due to the change o f u0) are in tro ­
duced as follows:

U  = ( +  m 2 U 2) / ( m  + m 2), (1)

u = (U 1 -  U 2) / b .

Here, U 1 and U 2 are the displacem ents o f atom s (with 
masses m 1, m 2) o f the first and the second sublattices, 
respectively, and b  is the period o f  sublattices.

A  very sim ple one-dim ensional and one-com po­
n en t case is considered w hich can  be analyzed exactly 
and to the end in  the general form. T he conditions o f 
the one-dim ensional and one-com ponen t m otion  are 
as follows:

U  ^  U( t, x ), ut ^  u ( t, x ).

In  this section U  and u  are any vector com ponent, but 
no t the absolute value o f the vector. T he variational 
equations o f the m otion determ ining the U(t, x), u(t, x) 
fields are built. T he Lagrangian

H
L  = ( 1/2H ) J [ p UnUn + pUnUn -  2d ]dx

0

is the starting point. Here, p is the average density o f 
the atom ic mass, p is the so-called density o f the 
reduced masses o f pairs o f  atom s (these values differ in 
the case o f atom s w ith  different masses), d  is the 
energy o fm acro - and m icrodeform ations, H  is the size
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of the region, and the thickness of the plane-parallel 
layer of the crystal. The dots on top mark time deriva­
tives.

The invariant expression with account o f the inter­
action (nonlinear mechanical striction— rearrange- 
ment microstructure under the action o f macroscopic 
deformations, hereinafter, simply, striction) of the 
U(t, x ), u(t, x )  fields is

d = [(T / 2)( Ux )2
2 (2)

+ (к / 2 ) ( Ux )2 + (p  -  sU x ) ( 1  -  cosu ) ] ,
where U,x and u,x are the macro- and microscopic gra­
dients; T , k  are macro- and microscopic modules; s  is 
the coefficient of nonlinear striction; 2 p is the inter­
atomic potential barrier in the nondistorted lattice 
(the activation energy of the atomic bonds in the unit 
cell); and the comma in the tensor indices marks spa­
tial derivatives. The gradient terms in expression (2) 
provide its invariance at macrotranslations, and the 
periodic term cos u provides invariance of the energy 
to the mutual translations of the sublattices in a certain 
and fixed direction. In the one-dimensional theory, 
the changes of the value of the microdisplacement 
vector, but not of its direction, are taken into account. 
More general cases are considered in [6 —8].

By varying the functional JL d t  on displacements u;

gradients Ux , u x; and velocity U, u and equating its 
variation with zero, the system of two connected equa­
tions of the Euler—Lagrange type for two fields— 
acoustic macrodisplacements and optical microdis- 
placements— is obtained:

p U = T Ux x  -  [s ( 1 -  c o s u ) ] x, (3)

p u = k u x x  -  (p  -  sU x ) s i n u. (4)

anharmonicities of different degrees has been used in 
lattice mechanics long ago. However, strong nonlin­
earity allowing the transitions of atoms to the neigh­
boring cells (reconstruction transitions), for the first 
time was introduced in our works [7—9]. In addition, 
we used nonlinear striction forces (last terms on the 
right), implementing the micromechanism of the car­
dinal rearrangement of the structure in Eqs. (3) and 
(4). I f  these terms are ignored, the equation of the 
classical theory of elasticity and the independent 
equation of the microshift of sublattices are obtained 
in the limit.

Turning to dynamics, the consideration is limited 
to the processes of the propagation of the nonequilib­
rium perturbations with the constant velocities (prob­
lem “without initial conditions” ) when both fields are 
a function of the wave phase q,

q = x  -  V t , ( V > 0, V < 0). (5)
Here, V  is the constant phase velocity (two signs of the 
velocity refer to two waves propagating in opposite 
directions). It is difficult to set the arbitrary initial 
states. In this case the stationary modes necessary for 
the existence of the solitary waves require searching for 
quite complicated solutions of Eqs. (3) and (4).

By limiting ourselves to (5) in Eqs. (3) and (4), two 
conventional differential equations,

T( 1  -  V2 / V  ) U q q  = [ s ( 1  -  cos u)] ,q  ,

V2 = t / p, Vk  = к/ p ,  U q  ^ d u / d q ,

к ( 1 -  V2/ V 2k )u q q  = (p -  s U q ) sinu, u q  ^ d u / d q ,  (7)
are obtained, where Vs and Vk are phase velocities of 
the acoustic and optical modes, respectively:

rk = t / p , Vk = к / p . (8)
The first equation (acoustic oscillations) takes into 

account both the long-range forces depending on the 
gradients of macrodisplacements (deformations) U,x 
and the forces due to the structural changes depending 
on the gradients of microdisplacements u x. The sec­
ond equation (“ optical” oscillations) contains the 
nonlinear forces of the interaction of sublattices (the 
second term on the right), which have a periodic char­
acter due to the invariance of the complex lattice with 
respect to the shifts of sublattices by one period. Note 
that microdisplacements are measured in the units of 
the lattice period.

The problem of the initial and boundary conditions 
for system (3) and (4) is discussed with reference to the 
partial problems of the propagation of the localized 
waves. These equations in the linearized form not tak­
ing into account the effect of mechanical striction are 
obtained for the first time in the dynamic theory of the 
crystalline lattices [ 1 ] and are known in the literature 
as equations of acoustic and optical oscillations of the 
complex lattice. Weak nonlinearity at the level of

By integrating (3), it can be written

T( 1 -  V2 /V 2 ) Uq  = s ( 1 -  cos u ) + a . (9)
The integration constant a  is the external constant 
field of stress. With its help macrogradients are 
excluded from Eq . (7). The separate equation for the 
optical mode is obtained:

/ к  1  -  V2/ Vk) u q q  = p?1sin u + p2sin u cos u . ( 1 0 )
Here the following notation is used:

~ s + aP 1 = P -  s --------- з— 3- ,  ( 1 1 )
t ( 1  -  V2 /  V )

P2 =
2s

T ( 1 -  V2/  V2)
(12)

Nonlinear equation (10) is a generalization of the 
known sine-Gordon equation, the solution of which, 
at definite boundary conditions, is solitary and peri-
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g o

Fig. 2. Potential energy of microoscillations at different 
stress (curve 1 corresponds to the tension stress, curve 6 to 
the compression stress).

odic waves. As a result of its single integration, the 
expression for the square microgradient is obtained:

(7 2 / 2 )p ( U ,q ) 2
= P( 1 -  cosu ) -  (p2/ 2)(1 -  cosu )2 + G. 

Hereinafter,

72 = i i( i -  v /  vk) , % = k / p ,

P  = ____ SG

~ P X( 1 -  V2/ v2)'
The first relation introduces the characteristic length l0
and the characteristic time l0Vk =  к /л[py. , which is a 
discriminating feature of this theory.

In Eq . (13), a new integration constant G appears 
alongside with g , which was already introduced. Obvi­
ously, both constants are connected with the boundary 
conditions superimposed on the values of the function 
itself and its gradient u q. The physical meaning of the 
constant G can be clarified by considering the situation 
at the boundary x  = 0, when q =  q0 = — Vt. Then u q = 
u t is the velocity of the oscillations of the model pen­
dulum, and the left-hand part of relation (13) is its 
kinetic energy. The right-hand part depending on u 
can be formally considered as the potential energy 
g0(u) (with the minus sign):

( /0/ 2 )p (u ,q) 2 + go = G;
7 (16)

g0 = -  P( 1 -  cosu ) + (p2/ 2)(1 -  cosu )2.
Here, the first relation expresses the law of conserva­
tion of energy.

Figure 2 shows the g0(u) function as a series of
curves at different values of the parameter p  linearly 
dependent on the stress g . The presence of diversely 
alternating maxima and minima determines several

(13)

(14)

(15)

different modes of the nonlinear oscillations of the lat­
tice microstructure or several wave branches.

In the considered approach the constant G plays 
the role of the permanent total energy of the micro­
structure oscillations and is presented by the first rela­
tion in (16). The value of this energy affects the picture 
of the wave branches, but it is only a part of the total 
energy of the oscillations of the whole system with 
macroscopic and microscopic degrees of freedom. In 
the one-dimensional case, the stress g  is a constant, 
and in such a case, the region of microoscillations 
determined by the two integration constants, G and g , 
can be considered separately.

The total energy G (Fig. 2) determines three bifur­
cation levels separating the different modes of the 
oscillations. The levels are denoted by the horizontal 
lines one of which is the abscissa axis. The upper level 
is the horizontal line connecting the maxima of poten­
tial curve 3, which has two shallow minima under the 
abscissa axis. The wave localized between the corre­
sponding maxima of the microdisplacement values 
refers to the motion between the points of contact with 
maxima. There are no minima above this level (at large 
G values), and the motion mode is reduced simply to 
oscillations in the periodic potential with the zero 
minima (curves 1 and 2), which is characteristic for 
weakly distorted lattices. On the contrary, with 
decrease in the energy value to the zero level, another 
potential relief with the new equilibrium positions is 
formed. A t G =  0, the potential (curve 4) with the two 
additional minima appears. The lattice changes its 
microstructure cardinally. With further decrease in the 
energy G to negative values, the new potential relief 
degenerates and once again transfers to the relief with 
the former number of extrema but inversed. The bifur­
cation point is denoted by a horizontal line connecting 
minima of curve 5. It is important that the cardinal 
rearrangement of the microstructure is connected 
with the stress value. This is seen from expression for
the potential energy (16) containing the coefficient P  
linearly dependent on stress according to formula (15).

These qualitative features can be revealed for the 
solution of Eq . (13) if its phase “ portrait” is built (see 
Fig. 3). The “ portrait” corresponds to the value p 1 = 
4/3. The vertical axis shows the value of “velocity” u q 
or microgradient u x if V  =  0, and the horizontal axis 
shows microdisplacements u . Each curve corresponds 
to one solution determined by the integration constant 
value from the range G =  —0.3, 0, 0.3, 1, 2. The total 
ensemble of the solutions is separated into three 
groups by separatrices denoted by the dashed curves.

“ Small” separatrices (G = 0) looking like a figure- 
eight (short dashes 4) limit the region inside which 
there are the solutions 5 in the form of closed curves 
with centers corresponding to the states of the stable 
equilibrium. The periodic dependences u(x) being a 
subfamily of partial solutions correspond to the closed 
curves 5. The periodic solutions 3 are given by the
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functions u(x, t) oscillating close to zero. The solu­
tions 5 oscillate around a certain average level ua Ф 0. 
In such a manner, the nonlinear effect of the 
dynamic “ expansion” due to the asymmetry of the 
potential wells is revealed. Finally, the drifting 
modes when the oscillating solution contains the 
linear component Au = q =  x  — Vt correspond to the 
solutions 1. These are modulated domain nanostruc­
tures. Their explicit form will be presented below. 
They are limited by both the microdisplacement and 
microgradient values. It is important that the smallest 
values of the constant G, i.e., the gradient energy 
k(u, x)2 (at u =  0) correspond to them.

The family of the periodic solutions 3, closed 
curves covering both mentioned equilibrium centers 
limited by the “ large” separatrix 2 (G = 1) (denoted by 
long dashes), lies outside the “ small” separatrix (at 
large energy values). These solutions are related to the 
large microdisplacements of the neighboring atoms, 
not leaving, however, the limits of the unit cell.

The region of the open curves 1 corresponding to 
the solutions not limited by the microdisplacement 
value is outside the “ large” separatrix (at large G). 
These solutions describe the plastic flow of the lattice.

It is possible to return to the formal analogy with 
the oscillations of the pendulum system (considering 
the u,q value as the pendulum velocity) and present the 
demonstrative picture of its passage through some 
potential barriers. The equilibrium points of the two 
potential wells separated by the potential barrier in the 
self-crossing point of the “ small” separatrix corre­
spond to the two mentioned centers. The transition 
over this barrier with the final velocity (at large G val­
ues) corresponds to the closed curves covering the 
given separatrix. If  the transition velocity tends toward 
zero, the pendulum reaches the bifurcation point 
(unstable equilibrium)— the saddle point of the self­
crossing of the separatrix. Since the time of staying 
close to the separatrix is large, the corresponding states 
are of practical interest. These are solitons of the 
microdisplacement field or lattice defects. Their phys­
ical meaning is clarified below.

The unstable state on top of the higher potential 
barrier corresponding to the second saddle point of 
self-crossing of the separatrix ( |u| = n, u x =  0) corre­
sponds to the second (“ large” ) separatrix 2. Kink solu­
tions that also describe the structure defects are imple­
mented on the “ large” separatrix.

In Fig. 4 different modes of the periodic oscilla­
tions are presented by subregions separated by bound­
aries to which the solitary waves in the form of kinks 
and solitons correspond. The value of the effective
potential barrier P  is shown on the abscissa axis. 
According to definition (11), this is a linear function of 
stress a. The plane of the integration constants is 
divided by the coordinate axes and the direct line G =
—2p t = —2(P  — p 2) into regions of the different solu-

u

Fig. 3. Phase portrait of microoscillations.

n

Fig. 4. Map of regions of the different solutions of micro­
wave equation (13) depending on the integration constants G
and P(a).

tions of system (6), (7). Numbers 1—6 denote the 
regions of existence of the periodic solutions. The 
boundaries between regions form a horizontal line (the 
ray of the positive abscissa axis) G > 0 and an inclined
line given by the equation G =  —2 p x =  —2( P  — p 2). 
The periodic solutions of the regions 4 and 5 are given 
by functions u(x, t) oscillating close to zero. The solu­
tions 3 and 2 oscillate around a certain average level 
ua Ф 0. This is the manifestation of the nonlinear effect 
of dynamic “ expansion” due to the asymmetry of the 
potential wells. Finally, the drifting modes when the 
oscillating solution contains the linear component 
correspond to the region 1.The objects of this study are 
special solutions corresponding to the points of the 
inclined and horizontal boundaries mentioned above. 
The points of the boundaries belonging to the regions 
marked in Fig. 3 with bold lines correspond to the 
localized solutions of the kink type (dislocations) and
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solitons (defects of packing). The points on the con­
tinuations of the bold lines to the right marked with 
thin lines correspond to the special periodic solutions 
to which the solitary solutions transform. These (soli­
tary and periodic) solutions are considered in the fol­
lowing sections. The solutions not related with kinks 
and solitons belonging to regions 1—6 are not consid­
ered here.

2. S T R U C T U R A L  T R A N S I T I O N  I N  S TA TIC S
In the beginning, some problems of the rearrange­

ment of the lattice in the field of the external stress 
regardless of the explicit type of the solution of equa­
tion (10), i.e., regardless of the boundary conditions 
are considered. This equation contains the structurally 
sensitive parameter p 1 , the coefficient in front of the 
first term on the right, and the effective interatomic 
barrier dependent on the external stress. It can be zero 
and even change its sign to which the bifurcation point 
of the solution of Eq. (10) corresponds. As a result, a 
new structure of the lattice with new properties 
appears.

The case of the static structures is considered. By 
assuming in formulas (11) and (12) that the velocity V  
is zero and referring to the static notations p1 and p2, 
one can write

p 1 ^ p 1 = p  -  Ap, Ap = s (s + а )/ X . (17)
Here, p l means the static value of the effective inter­
atomic barrier p 1 , which differs from the potentialp  of 
the ideal nondistorted lattice by the value Ap. The lat­
ter is called weakening of the lattice in the field of 
stress.

The total weakening of the lattice is reached in the 
first bifurcation point when the value of the effective 
barrier p 1 is zero, when

Ap = p  or (s + a )  = p X , (18)
i.e., the striction effect compensates (smooths) the 
initial interatomic barrier. Since by definition p  > 0 
and X > 0, then Ap > 0. Note that, otherwise, weaken­
ing in the field of stress is impossible. A  certain thresh­
old value of stress corresponds to this point of the 
structural transition. It depends on the sign of the 
striction coefficient. If  s  > 0, then

a  = a n , a n = p X /s  - s . (19)
I f  s  < 0, then

a = a ,1 , = -  (pX/| s|) + |s|. (20)
Here, at1 is the threshold value of stress at which the 
structure of the lattice rearranges as a result of weaken­
ing of the interatomic bonds. Note that the rearranged 
structure exists at the conditions a  > at1 (s > 0) and 
a  < at1 (s < 0) and the weakened structure exists at the 
inverse signs of the inequalities.

The case in which the first coefficient of Eq . (13) 
becomes zero corresponds to the second bifurcation
point, i.e., the condition P  =  0 or p x =  — p2. In the 
unfolded form, it takes the form of the criterion for 
stress:

a  = a  t, a t = p  X /s .

For the positivity of thep  and X values to hold, s  and a  
have to be of the same sign.

The third special point p 1 =  p 2 is the boundary of 
the region of existence of the solutions of the solitary 
wave type. It is achieved at the following threshold 
value o f stress:

a = a ,2 , a n = (pX /s) -  2s = -  s, s > 0,
and the positive value of the potential barrier corre­
sponds to this point. The zero value corresponds to the 
first point. This is not the only difference. The bifurca­
tion points delimit the different lattice structures. In 
statics the structural differences are revealed in differ­
ent dependences of the amplitude on energy, for 
example, as shown for solitons in [8]. The considered 
criteria of hardening and weakening are important in 
the analysis of the mobility of defects at various condi­
tions of stress.

3. C O N D I T I O N S  O F  T H E  A P P E A R A N C E  
O F  T H E  S O L I T A R Y  W AVES

The solutions of Eqs. (10) or (13) are presented as 
noted above by three modes: nonlinear periodic waves 
proper, kinks, and solitons. Only kinks and solitons are 
considered in this section. The conditions of their 
appearance are the boundary conditions as well.

The equation of the moment transfer of pulse (13) 
has, generally speaking, two soliton branches deter­
mined by the condition imposed on the integration 
constants G and a  in this equation. These boundaries 
between the regions are G > 0, the ray of the positive
abscissa axis, and G =  —2 p 1 =  —2(P  — p2), the 
inclined line, shown in Fig. 3. The special case G =  0 
is not considered. Excited perturbations depending on 
stress are considered. They correspond to the case of 
the appearance of the extreme excitations u =  n  (the 
displacement by half of the period) in infinitely distant 
points |̂ | ^  да, where the gradients of this field on 
coordinates and time become zero. In fact, from 
expression (13) for the first integral, one can see that at 
the values u =  n, u q =  0 the notation for the constant G 
takes the type:

G = -2p1 = -2  (P  -  p 2). (21)
Here, p?1 is the dynamic quantity determined by (11). 
For the solitary waves of the kink and soliton type to 
appear, this relation, taking into account the specified 
boundary conditions, should hold. The second con­
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stant a  is in the right-hand part according to expres­
sions (11) and (12) and allows one to meet one more 
boundary condition, finally determining the kink or 
soliton solution. In other word, for kinks it is necessary 
to take into account as well the condition in the center 
(q =  0), namely, u =  0. By means of expressions (13), 
(11), and (21), the relation

7 2(u,q )2 = -  2p + 2s----s + a  , (22)
X ( 1 -  V / V )

which links the slope in the inflection of the kink with 
the integration constant a , was obtained.

A  similar relation for the soliton is obtained from 
the condition u =  ue, where ue is the extreme value in 
its center (amplitude). It should be taken into account 
that, in the soliton center, u q =  0, i.e., the microgradi­
ent becomes zero. Taking this condition into account, 
from (13), the relation

0 = P ( 1 -  cos u e ) -  (Р2/ 2 )(1 -  cos u e )2 -  (23)
is obtained. According to (11) and (12), it links the 
soliton amplitude with stress a  contained in coeffi­
cients p 1 and P . This relation allows, generally speak­
ing, the transition (for solitons) to a new integration 
constant, amplitude ue.

Note that the general relation (21) (for kinks and 
solitons) alongside with the specified two constants 
contains the wave velocity as well (see expressions (11) 
and (12)). Since these constants are determined by the 
boundary conditions, equality (21) can be considered 
as the definition of the velocity of the propagation of a 
kink or soliton. In the unfolded form, this condition is 
written as follows:

Р1 = Р -  (1 -  V2/ V )A p .
Here, Ap is determined by expression (17). Thus, the 
dependence of the propagation velocity on stress and 
the potential barrier value is as follows:

flow of the mechanical perturbations— solitary waves 
inside the sample. I f  the external loads (stress) are 
absent, a  =  0, then from (24) the expression for Vss, the 
propagation velocity of the corresponding free oscilla­
tions follows:

v X / V  = 1 - s2/X ( p -  ~P l), V2 = X / p . (26)

It is important that this characteristic is determined 
only by the properties of the crystal and is the propa­
gation velocity of the nonlinear sound wave, taking 
into account the structural softness of the crystal. It is 
less than the velocity of the linear sound wave.

Then it is possible to introduce the effective
dynamic module of elasticity X analogous to the deter­
mination of the velocity of the linear sound wave (8):

VSs = X/p . (27)

Then from (26) it follows:

X = X -  s2/ (p -  p 1).

This relation means that the crystal with rearranged 
structure is softer and the typical velocity Vss is less 
than the linear sound velocity Vs.

One should not think that, in general, only sub­
sonic waves propagate in the crystal. Only free vibra­
tions were mentioned. Upon the effect of the external 
loads, supersonic waves are possible as well. In the 
general case, when stress a differs from zero, the 
velocity V according to (24) depends on stress as well. 
By using definition (27), (24) can be rewritten as a 
dependence of the effective coefficient of dynamic 
elasticity on stress as well:

X = X f  1 -  Ж - )  = X -  s -s s ± a L .
K p  -  ph (p -  p i )

V2/V2 = 1 -  s s + c- . (24)
X(p - ph)

The constant on the right to a can be expressed in 
terms of the soliton amplitude and the kink slope in 
the center by means of formulas (22) and (23).

It should be noted that, in statics (V  =  0), the cor­
responding values a and p 1 are related as

p 1 = p 1 , p 1 = p  -  s(s + a ) / X . (25)
In other words, in the case of standing defects, their 
characteristics such as the amplitude, slope in the cen­
ter and, as seen below, width are connected between 
each other.

In dynamics, according to (24), the energy is spent 
on the motion of defects as well. Therefore, (25) can 
be considered as the condition of the threshold excita­
tion (for example, by means of laser irradiation) of the

N ow  the effective module of dynamic elasticity is not 
necessarily less than the real one. Everything depends 
on the sign of the second term on the right in this 
expression. Depending on the value and sign of stress 
both weakening, Ap > 0, and hardening, Ap < 0, of the 
crystal can take place. These cases are characterized 
above.

The external impact leads to decrease in the elastic 
properties when Ap > 0 and criteria for stress (18), 
(19), and (20) hold. In this case formula (24) gives the 
dependence of the propagation velocity on stress and 
material parameter.

4. S O L I T A R Y  W AVES
N o w  one of the localized solutions of Eq . (13) sat­

isfying condition (21) is considered. The solution is
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a 2 velocity increases approaching the threshold value V1, 
which at the basement (24) satisfies the expression

s + q o  

xp

The further narrowing of the width and increase in 
the velocity do not occur since they are associated with 
the transition of the value in region of imaginary val­
ues. O n  the contrary, it is possible that the velocity 
decreases to the zero level that corresponds to the sta­
tionary defect, and this is observed at stress

q 0

O n  the contrary, with approaching the other 
boundary of the region (p 1 =  p2) the amplitude mul­
tiplier increases infinitely. The amplitude tends to 
zero, and in all space the pedestal level u =  n is reached 
(defect of the packing is spread). The velocity takes the 
value V2:

Fig. 5. Dependence of the amplitude multiplier a  on the 
wave velocity at different values of the parameter S(ct).

excited in the range of the relatively weak impacts at 
P2 > P 1 > 0 and has the form

u = ± 2 arctan (a  cosh Q ,
Z = (q -  qo)/L  = (b -  x  + V t) /L .

(28)

Here the double signs on the right correspond to the 
pair of the possible solutions. In addition, the notation

L 2
2 p2 - p 1 

i -  v 2 / v k
10 = k  / p , (29)

2a = l - ^ / v k - A  + s V X p , 
p2-  p i s  - 1  + v 2 /  v k

0  2  s + s q
S  = s ~

(30)

is used. In statics similar solutions are considered in [7].
Solution (28) is a soliton (on a pedestal n) with the 

center q  =  q0 and width L  or a defect of packing in a 
crystal of the type of the accumulation of vacancies. 
The soliton is changed with approaching the boundary 
of solution (28) or the bifurcation point p 1 = 0. Its 
width (depending on the velocity as well) decreases; 
the amplitude (the displacement from the pedestal 
level downward) increases, tending to the limiting 
value (^  я ); and the amplitude multiplier a ^  0. The

v2 / V  = i -  s , s  = s ̂ .Xp

Thus, soliton (28) exists only in the interval of the 
velocities ( V1 — V2). Its value does not depend on stress 
and is given by expression

И - И  = s i 
v J X p’

and the amplitude of the multiplier a obviously 
depends in the velocity and stress q.

Function (30) is shown in Fig. 5 for different values 
of the parameter S. For formula (28) to determine the 
real solution, it is necessary that two conditions hold

l2
simultaneously: a 2 > 0 and — > 0, which correspondL 2
to the upper region of curves lying between two bold 
curves 2  and 5. The values of the parameter S  =  1 and 
S  =  1.5 correspond to these regions and, most impor­
tant, tension (positive) stress. Interestingly, inside this 
region the velocity dependences for the originally sta­
tionary solitons (they start from the ordinate axis) are 
located.

Note that, generally speaking, the microdis­
placement u0 in the center of soliton (microampli­

tude) if written as a  =  tan---0 has a clearer physical
meaning than the amplitude multiplier a . The value 
n  — 2arctan a  =  n — u0 is the microdisplacement with 
respect to the pedestal level. By using relation (30), it 
is possible to express the microamplitude u0 in terms of 
the velocity and parameter S  or stress. On the other 
hand, according to (29), the microamplitude related 
to them in terms of the width of the defect L  in the
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center of which the microdisplacement u0 is imple­
mented.

Having the solution for the microfield, it is possible 
to transfer to the macroscopic field U. It is useful to 
rewrite (28) as follows:

1 -  cos u 2 a 2 cosh2 Z 
1 + a 2 cosh2 Z

By using the obtained expression in formula (9), the 
corresponding explicit expression for the macroscopic 
field of deformations can be found:

L (  1 -  V / ) Uq = s 2a cosh Z + CT. (31)
1 + a 2cosh Z

It is clear that these deformations are induced by 
microscopic defect (28). Note that the even function 
of the argument in (31) has a bell-like (soliton-like) 
form.

The other solitary solution corresponding to the 
branch G/2  =  — p 1 but in the other range of stress val­
ues (p  < 0), is given by the formula

2a

i = ±2arctan (a sinh Q ,

- a 2 = - p 1 / (p2 -  p1), Z = (q -  tfo) /L ,
(32)

where the double signs on the right correspond to the 
pair of possible solutions. In addition, L  is the typical 
size of the region of the localization of the solution 
(kink), which is present in expression (29). However, 
the amplitude multiplier a  defined here is a somewhat 
different manner than in (30). It is related to the 
amplitude multiplier a via the imaginary unity. I f  the 
amplitude multiplier a and the width L  are real quan­
tities, then the microscopic field u (Q  is a real quantity 
too. It is clear that a2 should be negative. The region 
below the abscissa axis and below the boundary curve 5  
in Fig. 5 corresponds to this multiplier. The latter 
excludes as well the region of the imaginary values of 
the width L  (curves 7—9) corresponding to the values 
of the parameter S  < 1. Thus, the amplitude multiplier 
depends not only on the velocity, but also on stress.

Solution (32) describes the kinklike defect (with 
the center u =  0 in the “ point” q =  q0) and with limits 
u ^  — п, п (at the infinite distance from the center). In 
the linear approximation on Z , the expression for the 
Peierls dislocation is obtained [2]. The same as in the 
case of soliton, the microdisplacement u0 at the phase 
origin when q =  0 has a clearer physical meaning than 
the amplitude multiplier. A t the same time, in the kink 
center, q =  q0. The constant q0 can be chosen so that at 
the boundary q =  0 the microdisplacement reaches the 
preassigned value u =  u0.

Then from solution (32) the relation

tan2u- = a 2sinh2 q0 (33)

10/L 2

Fig. 6. Dependence of the inverse width of the defect on 
the microdisplacement on the boundary of the defect layer.

follows. By using (33) and notation (29), (30), the for­
mula

2 2 2
L - L  = ,  - (34)
LP /0 sinh2 q 0

is obtained. The quantity L 2/ /I deduced in this way is 
useful at the formulation of the problem of the motion 
of the layer (plane defect) q0 = b thick containing the 
considered kink. Formula (34) shows at what values of 
the microdisplacement u0 at the boundary of the plane 
defect q =  0 a kink (32) with the relative width (L//0) 
appears inside it. This dependence is shown in Fig. 6 
for different values of the parameter s2/Lp.

Figure 6 shows that for the existence of the kink 
a limited value of the microdisplacement u0 <
п arctansinh b is necessary. The equality sign corre­
sponds to the vertical asymptote limiting the region of
the solution. The kinks with the width of L 2/ /0 »  
(Lp)/s2 appear. A t large values of the microdisplace­
ment at the boundary layer at u0 = п arctansinhb , 
continuous kinks (32) degenerate into the defects with
the zero width ( /0 /L2 ^  да), i.e., in the system of the 
breakups of the microdisplacement field. Due to the 
ambiguity of the arctangent function u0 ^  п ± 2 nn  at 
b ^  да. This means that the microdisplacement equal 
to half of the lattice period is reached (with accuracy 
to the integer number of periods) only at the boundary 
infinitely distant from the kink center, whereas in its 
center it is zero. In a limited-size body containing 
kinks, the output of dislocations on the surface with 
the formation of steps is possible.

Interestingly, the restrictions of such kind do not 
arise in the case of solitons. Similar dependences of
the quantity /02 / L 2 on the microdisplacement u0 on the
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boundary of the layer (defect) q =  0 exist at all u0 val­
ues, and its maximum corresponds to u0 =  0; 2п, 
where defects are the narrowest.

Just as in the case of the soliton, the constant b can 
be chosen so that, at the boundary of the semispace 
x  = 0 ,  the microdisplacements reached the preas­
signed value u =  u0. To this end, kink (32) should meet 
the condition

-10 = p0sinh2b/^sinh2b -  tan2—) . (35)
L

that the initial microscopic field u(Q  is, according 
to (32), a kinklike defect (with the center in q0 and lim­
its u ^  —п, п at the infinite distance from the center).

5. D E G E N E R A C Y  O F  S O L I T A R Y  W AVES 
I N T O  P E R I O D I C  W AVES

The transition of the solitary waves (kinks and soli- 
tons) into the periodic localized waves is considered in 
more detail. Unlike periodic waves (regions 2—6 in 
Fig. 3), they belong to the first branch G =  —2 p 1 =

Unlike the soliton, other dependences on microdis­
placements correspond to the kink. Figure 6 shows
asymptotes of the infinite ^ / L 2 values (zero values of 
the kink width or thickness of the boundary layer) at 
the boundary values of the microdisplacements

tan — = sinh b 
2

, which follow from expression (35).

It should be emphasized that such values exist always. 
This intensification of the kink defect (up to a
breakup) is due to the velocity dependence of the ?0 / L 2 
value, which is considered below.

Note that the curves in Fig. 5 located in the “ corri­
dor” between curves 2  and 5  come from the point of 
the ordinate axis and cross the abscissa axis. They cor­
respond to the stationary defects, which then begin to 
move and, at a certain velocity, transform into break­
ups propagating with supersonic velocities. One of the 
differences of kinks from solitons is their region of 
existence on the velocity axis seen in Fig. 5. Thus, soli- 
tons are slow defects, the velocity ofwhich is much less 
than the velocity of the linear sound wave Vs.

O n  the contrary, the kinks can move with super­
sonic velocity and also greatly exceed it, reaching the 
level of the velocities of the optical mode. Curve 1 in 
Fig. 5 with the amplitude multiplier a2 =  —a 2 ~ 1 
nearly instantly comes to the region of indefinitely 
large velocities. The amplitude multiplier in the solu­
tion (32) tends to unity. The limiting condition a =  1 
means an infinitely fast sliding of the kink.

Having the solution for the microfield, it is possible 
to transfer to the macroscopic field U. It is useful to 
rewrite (32) as

1 -  cos u 2a2 sinh2 Z 
1 + a2sinh2 Z

By using this expression, in formula (9) the corre­
sponding explicit expression for the macroscopic field 
of deformations can be obtained:

P (V 2 -  V2) Uq  = s 2a s2inh Z + a .
1 + a sinh Z

Note that this even function of the argument U q =  f (Z) 
has a bell-like (soliton-like) form in spite of the fact

—2(P  — p 2) (the inclined straight line in Fig. 3). It 
appears that the solitary waves of the second branch 
(G =  0) can transfer to the periodic ones as well. The 
transformation of kinks and solitons into the periodic 
localized waves occurs, as it was noted in previous sec­
tions, at definite stress. However, kinks and solitons of 
the first branch can degenerate into the periodic waves 
with decrease in stress (increase in the potential bar­
rier p 1) as well. This is observed when stress overcomes 
the threshold determined from the relation p 1 =  p2
and the l ^ /L 2 value becomes negative according to 
definition (29). A t imaginary values of the width of 
the defect (k =  —iL)  in the right-hand parts of solu­
tions (28) and (33), the hyperbolic functions trans­
form into trigonometric ones:

cosh(q -  q0)/ L  ^  cos(q -  q0)/ k ,
(36)

sinh (q -  q0)/ L  ^  - i sin (q -  q0)/ k .
As a result, solution (28) takes the form

tan (u/ 2) = a  cos (q -  q0)/ k . (37)
However, here it is necessary to take into account 

the conditions at which the amplitude multiplier a , 
the same as the value u, should remain the real quan­
tity (a2 > 0) at the inequality l2 / L 2 < 0. The analysis of 
the corresponding formula for a  — (30) is given in pre­
vious sections. As can be seen from plots in Fig. 5, the 
conditions of the implementation of both inequalities
(a2 > 0 and l2 / L 2 < 0) hold for a series of curves in the 
case of the periodic waves. They have different forms, 
depending on the velocity interval. In the case of solu­
tion (37), it is necessary to assume

1 + s2/kp > S > s2/kp (0 < V2 < V2);

S < 0 ( V2 < V2 < Vk).
The results are given in Fig. 5. The condition a 2 > 0 

holds for the regions of curves lying above the abscissa 
axis and on the right to the boundary curve 5. The con­
dition l02 /L 2 < 0 is implemented by the branches lying 
to the left of the ordinate axis and above the abscissa 
axis (in the fourth quadrant). The amplitude depen­
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dences, the upper regions of curves located between 
curves 5  and 7, correspond to the subsonic branches 
corresponding to formula (37) (these are small regions 
coming to the right and upwards from the abscissa axis 
up to the ordinate axis). The supersonic branches of 
solution (37) begin on the ordinate axis and go to the 
left and upward with the output to the horizontal 
asymptote V = Vk, the boundary of the optical mode. 
The corresponding amplitude dependences are fea­
tured by the upper regions of the curves located to the 
right of curve 7. They come under the abscissa axis 
(a 2 < 0) implementing the transition to the other peri­
odic solution.

This new periodic solution is obtained from rela­
tion (33) if the transition to the imaginary lengths L  by 
means of the second relation in (36) is taken into 
account. In order to eliminate the imaginary multi­
plier in front of sine, the transition to the region of the 
amplitude dependences a 2 < 0 is performed. They cor­
respond to the region of curves in Fig. 5 lying below 
the abscissa axis. To keep the microdisplacement u in 
the region of real numbers, the amplitude multiplier of 
the form a =  ia  is taken. As a result, the periodic con­
tinuation of solution (32) is obtained:

tan(u/ 2) = - a sin(q -  q0)/ X . (38)

u/n

Fig. 7. Evolution of the form of the periodic solution 
depending on increase in the amplitude multiplier from 
0.2 to 1000.

the amplitude multiplier (the microamplitude val­
ues u ^  —n, n). In the limit the point of the transition 
of the phonon modes into the kinks ones is reached. A t 
the beginning of the section, the criterion of this tran­
sition as a condition p 1 = p2 was formulated. By open­
ing it in accordance with formulas (11) and (12), the 
relation

The mentioned curves under the abscissa axis 
directed to the side of infinitely high velocities but not 
coming below the level a 2 = —1 are the periodic waves 
of the optical mode. In Fig. 5, they correspond to the 
branch in the field of imaginary values L  coming 
upward and to the left. The branches corresponding to
the intermediate ultrasonic range Vs < V2 < V2 lie 
below the level of the optical oscillations. Their ampli­
tudes are presented in Fig. 5 by the regions of curves 
also not coming below the level a 2 = —1 but located 
between curves 5  and 7 (1 < S  < 0).

Finally, the slow periodic waves corresponding to 
solution (38) are shown in Fig. 5 by the subsonic 
branches in the fourth quadrant as well. They start 
from the abscissa axis and conform to the originally 
stationary regular defects to which the amplitude 
dependences with infinitely decreasing (to the nega­
tive side) values, coming downward and to the left 
(—да < a 2 < —1) correspond. The infinitely increasing 
amplitude multiplier in front of the sine in solution (38), 
the left-hand part of which is expressed in terms of the 
tangent of the sought function leads to the intensifica­
tion, degeneracy of its smooth dependence on the 
argument. Figure 7 shows the plots of the microdis­
placements u(q/L) (38) for different values of the 
amplitude multiplier of the solution.

Obviously, the profile of the wave presenting a sys­
tem of П -like (localized) sequences or a regular 
sequence of sharp kinks with alternating signs remind­
ing the plot of elliptical sine with the infinitely large 
period L  in Fig. 7 corresponds to the high values of

= (1 -  V2/  V ) (39)Xp

is obtained. Here, V  is the wave velocity at the bound­
ary of the phonon-kink transition. In this form the 
criterion of the transition gives a direct relation 
between stress and the transition velocity Vt.

The question about stability of the periodic waves 
arises at the transition of the solitary waves to the peri­
odic ones. In this sense the result obtained by Wisem 
[13] is of interest. He has proven the necessary condi­
tion of the stability of the stationary periodic wave 
being the solution of the Klein-Gordon equation. A t 
p2 = 0 the studied Eq . (13) is its particular case. The 
necessary condition of Wisem is reduced to the 
requirement of increase in the intensity of the oscilla­
tions G with increase in the inverse period l0/L .  Since 
these values are related (for the waves of the first 
branch) by the relation p(l0/ L ) 2 = p2 —G/2, it is obvi­
ous that the condition of stability holds if l02 /L 2 < 0, 
i.e., in the case of periodic waves.

6. D IS P E R S IO N  D E P E N D E N C E S  
F O R  L O C A L I Z E D  W AVES

The localized solutions of Eq . (13) have different 
dependences of the width of the wave localization L  on 
parameters a and V. O f  most interest are the waves of
the first type G =  —2p 1 = —2(P  — p2), to which
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V 2 V 2

dependence (29) corresponds. In the unfolded and 
transformed form it looks as:

Й _ _______ s

L 2  ( 1  -  V /  V2 ) ( 1  -  V 2/ Vk )

fi _  k  S _  sl о , S  8 m ,  8 m
P P

1
( i -  V  /  V ) ’
(2s + a)

X '

(40)

Here, the “wave” multiplier (1 — V2/ Vk) in the defini-
-  2tion of the value l о (14) is transferred to the right- 

hand part of the formula.
The physical meaning of the parameter S  attracts 

attention. It is simply proportional to the extreme 
value of the deformation 8m = XU, x =  2 s + a achieved 
in the region of the soliton or kink for the value u =  n. 
A t the positive value of the mechanical striction coef­
ficient the parameter S  the sign can change its sign 
depending on the value and sign of stress. O n  the other 
hand, S  characterizes the relation between macro- and 
microstates.

Relation (40) is equivalent to the biquadratic equa­
tion with respect to V2 having two roots V L (L) and
V0p (L) corresponding to the acoustic and optical 

branches. I f  the relationship is absent (S = 0, 8m = 0), 
these roots are as follows:

V  _  V2, (41)

V /  Vk _  1 + L 2/10. (42)

The first relation is the result of the solution of the 
macroscopic wave equation (an arbitrary wave propa­
gating at the velocity of the linear sound wave); the 
second relation determines the dependence of the 
velocity of the microdisplacement wave on the kink or 
soliton width. Both waves, according to the data, are 
independent, to each of them corresponding a branch 
in Fig. 8a. The first branch is a straight line parallel to
the abscissa axis at the level of V 2 = Vs2, the second 
branch (small dashes) crosses it and consists of the two 
regions of the hyperbole: supervelocity V 2 > V̂  (upper
curve) and low-velocity V 2 < V2k (lower curve). This is 
the so-called crossover (resonance) is degenerate if 
macro- and micromodes interact.

In the case of the tension macrodeformation (S = 
8m = 0.5 and (sa)/(Xp) = 0), the crossover picture splits 
into two branches (two bold solid curves in Fig. 8a). 
Both branches represent one root of Eq . (40) having a
breakup at V 2 < V2k . The supervelocity branch (bold
curve V 2 =  V2) corresponds to the second root. The 
pair of the branches is drawn further apart the stronger 
the interaction (the larger the parameter S  linearly 
dependent on stress). The values S  =  8m = 1 and 
(sa)/(Xp) = 0.5 satisfy the curve denoted with bold 
dashes. For the pair of curves denoted with long thin 
dashes S  =  8m = 1.5 and (sa)/(Xp) = 1. O n  the contrary, 
the curves closest to the crossover denoted by dots in 
Fig. 8a correspond to the negative values of the com­
pression stress (S = 8m = 0.2 and (sa)/(Xp) = —0.3).
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I f  the case of the negative parameter of the interac­
tion S  =  6m =  —0.5 and (sa)/(-p) =  —1 (compression 
macrodeformations) is considered, it is seen that the 
crossover is allowed with the formation of other 
branches (solid thin curves in Fig. 8a). N o w  the waves 
of the intermediate range of the velocities appear in 
the region of real solutions of the localized waves
( l2 / L 2 > 0) and low-velocity localized waves are not 
formed. They move to the imaginary region where the 
low-frequency periodic waves, which are supplied 
with the energy by the radio-frequency localized 
waves, can appear.

Note that in Fig. 8a the region of the negative val­
ues of the abscissa axis corresponds to the imaginary 
values of the defect width L .  The corresponding 
regions of the branches do not present the real solu­
tions to the solitary waves. However, they can make 
sense for the periodic solutions if the hyperbolic func­
tions by means of which the localized waves are 
described transfer to the trigonometric ones according 
to the criterion (39). Then the positive interaction 
parameter is responsible for the energy transfer of the 
localized waves to the periodic waves. This case was 
considered in the previous section.

Note the following as well. The points of the 
abscissa axis in Fig. 8a by definition represent zero 
velocities, i.e., they are related to the static values of 
the width of the stationary defect for which

L 0
= S  -  1 , V  = 0.

2
(43)

The bold dotted curve corresponding to the value S  =  1 
comes from the point l0/L2 =  0 on the abscissa axis. 
This means that the corresponding defect in the sta­
tionary state has the infinitely large width ( L 0 ^  да). If  
S  =  1.5, then the corresponding curve (shown with

2 2long thin dashes) should come from the point l0 / L 0 = 
0.5.

Relation (43) allows one to formulate the criterion 
of the coalescence of solitary stationary defects. Due 
to the fact that the left-hand part of expression (43) is 
positive, by opening the expression for S ,

-  6m > 1 ^СТ>СТр, CTp = P - /S  -  2S.
P

The second inequality is rewritten with respect to 
stress. Here, the <jp value is the threshold of the mobil­
ity of the defect. For dislocations it is known as the 
Peierls barrier [2]. Thence the coefficient of mechani­
cal striction s  can be calculated.

The defect width depends on stress: with increase 
in the positive (tension) stress the interaction parame­
ter increases. Then, according to (43), the inverse 
defect width L  increases as well, i.e., it is localized 
more strongly. In the limit the kink transforms into a

percussion blast wave. Its width also depends on the 
velocity. This means that the form of the localized 
wave upon its propagation is not conserved: it is 
changed due to the exchange energy with the macro­
scopic mode.

Note two features of the change of the form of the 
localized wave. The first of them is concerned with the 
asymptotic freezing of this branch out at large values of 
the square of the inverse width, when the level of the 
velocity of the linear sound Vs is reached and the quasi­
discontinuous wave appears. The second feature is 
revealed at the initial region of the sharp increase in 
the velocity (the width L  is large), when the ordinate 
axis is crossed in the point Vac =  0. The corresponding 
case is when the sufficiently smeared out kink or soli- 
ton, to which in this theory the solitary wave corre­
sponds, can stop.

Dependence (42) of the velocity on the width of the 
solitary wave, “ optical” branch V0p(L), which is the 
second root of Eq . (40), corresponds to the supersonic 
waves. In Fig. 8a it is shown with an upper curve. This 
curve, resembling a hyperbole, is asymptotically low­
ered to the limiting level, the typical velocity of the 
optical mode Vk. The value L -1 ^  да, i.e., the width, 
for example, of the kink, becomes small, and the 
quasi-discontinuous wave is formed.

Dependences (41) and (42) have a presentation in 
the region of the imaginary values of the width L  as 
well, when its square corresponds to negative values on 
the abscissa axis. In the figure this is the intermediate 
supersonic branch Va0 located in the interval of the
velocity values V2 < V2a0 < V t . It has a simple physical 
meaning: it describes the periodic (nonlocalized) 
waves, which were considered in the previous section. 
It should be emphasized that these are special waves of 
switching of the interatomic bonds with the amplitude 
um =  n, genetically related to the solitary waves by the 
general condition of the formation, when the con­
stant G in Eq . (13) is given in a special way according 
to condition (21). Given the other choice of this 
constant the other periodic waves belonging to the 
regions 2 -6  (Fig. 3) are possible.

The case of the strong compression stress at which 
the hardening parameter becomes a much negative 
quantity is of interest. If  the corresponding hardening 
parameter becomes

S = vk\
1  -  ,~ k k

V J
Vk > Vk, (44)

then the velocity of the optical mode V  =  Vk is reached. 
This follows from relation (40), which takes the form

% = 1 - V l / V 2s__________ 1 _ _
l 2 (1 -  V / V )(1 -  v 2/ Vk) (1 -  Vl/V k )'
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As can be seen from Fig. 8b, the corresponding branch 
crosses the level V  =  Vk at the positive value of l2 / L 2 > 0, 
when the solitary waves propagate. The second cross­
ing situation arises, which differs from the crossing sit­
uation considered in the beginning of this section (the 
resonance of acoustic and supersonic branches). In 
this case there is resonance of the supersonic and opti­
cal modes. This is typical for the tension stress, which 
weakens the lattice, leading to the appearance of 
standing defects.

The properties of the crystal undergo qualitative 
changes at large compression stress (S < 1 — V2k / V2). 
The crystal is strengthened, and it becomes rigid (dia­
mond-like), losing plasticity. The relevant manifesta­
tion is that the defects, i.e., solitary waves (kinks and 
solitons) capable of stopping, do not appear in it. In 
this case there appear only the high-velocity branches 
of the traveling waves shown in Fig. 8b for S  =  —1 (solid 
thin curves), S  =  —2.9 (short thin dashes), S  =  —3 (bold 
dashes), S  =  —3.1 (points), and S  =  —4 (long thin 
dashes). The crossing situation is formed by the inter­
section of the curve S  =  —3 with horizontal line V2 =
V2k =  4. In the first quadrant ( l^ /L 2 > 0) the subsonic 

branches coming from the points of the abscissa axis 
V =  0 to which the stationary defects correspond are 
absent. The soliton and kink solutions are revealed in 
the supersonic range. Interestingly, there still exists the 
narrow region of the supersonic (optical) waves occu­
pying the range of quite broad (weakly localized) for­
mations:

l2
0 < ^  < 

L 2

Here, the equality sign is achieved at the value of the 
hardening parameter S  presented by relation (44). 
This value is negative.

However, the branches of the low-velocity periodic 
waves coming from the negative region of the abscissa
axis are located in the second quadrant ( l0/L2 < 0) at
the condition S  < 1 — Vk/ V  . A t  the zero velocities, 
these are stationary periodic superstructures with the 
period L /l0. The traveling nonlinear waves exist only in 
super-velocity (optical) range.

7. T W O - D I M E N S I O N A L  W AVES 
O F  T H E  S I N E - G O R D O N  E Q U A T I O N  

I N  I N H O M O G E N E O U S  M E D I A
7.1. M ain Equations o f  the Two-Dimensional Theory

Lagrangian variation (1) is the starting point, just as 
in the one-dimensional case. N o w  the invariant 
expression for the energy of macro- and microdefor­
mations (taking into account their interactions: non­
linear mechanical striction, rearrangement of the

microstructure under the action of macroscopic 
deformations) has the form

d  = ( 1/2 )[ j  U(i,j) U(m, n) + k ijmnu(i,j)u(m, n)
/—2---- 2 (45)

-  (p  -  S ikU(i,k)) ( 1 -  c°suR) ] ;  uR = J ux + uy.
Here, Ui is acoustic displacements (the center of the 
inertia ofpair of atoms in the unit cell); ui are “ optical” 
displacements (their mutual displacements); p  is half 
of the energy of the activation of the rigid shift of sub­
lattices; S ik is the tensor of the striction coefficients; 
and Xikmn, k ikmn are tensors of the coefficients of elastic­
ity and microelasticity, respectively. The term with a 
multiplier (1 — cosuR) presents the energy of the inter­
action of sublattices, which is chosen as a periodic 
function of microdisplacements. In this case (45) 
turns to be the invariant function with respect to 
mutual translations and rotation of sublattices. The 
variational equations of the motion of the macro­
scopic and microscopic modes have the form

P Ui = j
®ij = ^ ijmnU( m, n) — sij( 1 — cos uR) ,

Fu i = kijmnum> nj + ltP  sin ur ,

P  = P -  SnjUn, j ,
where P is the average density of the mass of atoms and 
F  is the reduced density of the pairs of atoms. The first 
equation is the equation of the elastic continuum, and 
the second equation takes into account the discrete 
structure of the lattice. The second term on the right in 
(48) corresponds to the interaction neighboring atom 
in the unit cell and takes into account the near order in 
the lattice. The quantity l( =  ui/u  is the unit vector of 
the microdisplacement of the neighboring atom.

Equation (48) has the form of the generalized vec­
tor sine-Gordon equation with the variable coefficient P  
in front of sine since the coefficient includes the term 
of the macroscopic gradient of the displacement 
(macrodeformation). The latter, generally speaking, 
depends on coordinates and time according to Eq. (46). 
This circumstance is a quite interesting problem in 
physics of crystalline state. The issue is that the coeffi­
cient P  is the effective interatomic potential barrier, 
the activation energy of the bonds. It is, as already 
noted, a quite sensitive instrument for controlling the 
microstructure and properties of the lattice by means 
of the macroscopic fields of deformations and stress. 
In the case of the one-dimensional field of the stress 
above, it was possible to consider stress and the coeffi­
cient P  constant. This allowed finding a series of exact 
solutions of the sine-Gordon equation and analysis of 
the effect of the microstructure rearrangements on the 
propagation of the nonlinear waves. The generalized 
vector sine-Gordon equation in form (48) is too com­
plicated for the analysis. It is possible to reveal a num­
ber of its exact solutions in the case when it is reduced

(46)
(47)

(48)
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to a simpler form. This is achieved in the problems 
related to the deformations of thin plates, narrow gaps, 
and interphase regions.

The plane problem for the fields of macro- and 
microdisplacements is considered,

Ux  = Ux (x, y, t); Uy  = Uy (x, y, t); Uz = 0;
Ux  = Ux (x, y, t); Uy  = Uy (x, y, t); u z  = 0.

For a cubic crystal, the equations are

pU x = cxx, x + cxy, y , p Uy  = c yy,y + cyx,x, (49)

P ux = -P l x  sin ( u2
2\!/2 v  + uy ) + K 1 ux, xx (50)

+ K 23 uy ,  x y  + K 3 ux ,  y y ; P  = S  ( U%, x  + Uy ,  y) ,

puy = -P l y  sin ( u2 2\!/2 v  + uy ) + K 1 uy, y y (51)
+ К 23 ux ,  y x  + K 4 uy ,  x x ; S  = S%, x  = S y ,  y  •

For the fields of stress in accordance with general for­
mula (47),

Cxx = ^1 Ux , x + ^2 Uy , y  -  S x x ( 1 -  cos ( ux + uy) 1/2) , (52) 

CTyy = Xy Ux ,x  + Xi Uy ,y  -  S y y ( 1 -  cos(uy + uy) 1/2) , (53)

° y x  = X 3 ( Ux , y  + Uy ,  x ). (54)
In the last expression the term with the coefficient S^, 
which is zero for the crystal of cubic symmetry, is 
omitted if the Cartesian coordinate system in the ini­
tial state is chosen so that its axes coincide with the 
crystallographic symmetry axes of the crystal. For 
crystals of other classes of symmetry, exclusive of tri­
clinic and monoclinic syngonies, analogous gradient 
terms, but with less symmetrical coefficients, are 
obtained.

Additional simplifications are necessary for further 
analysis. Even in the two-dimensional case, (50) and 
(51) are a system of two coupled equations for the 
components of microdisplacements. This system can 
be reduced to the two separate equations of the sine- 
Gordon type only in particular cases, since it has the 
cross second derivatives of the uy x y , ux y x  type.

As shown in [13], in the extremely narrow nanos­
cale gap L  wide, it is possible to restrict oneself to the 
consideration of near-surface high-gradient layers, 
which re exceedingly thin and spreading in the direc­
tion of the O Y  axis with the transverse displacements ux 
that are small if  compared with the longitudinal 
ones uy. Therefore, the following restrictions are 
acceptable:

Ux «  Uy, Ux «  Uy; (55)
ux <  u , ux <  uy; d u / dy <  d u /d x .

Using these conditions, equations determining the 
two-dimensional fields of macro- and microdisplace­

ments can be written in the zero approximation in 
small terms.

First the solution of macroscopic equations of 
motion (49) with key relations (52)—(54) is consid­
ered. After substitution of the latter in the former, they 
should be simplified by accepting conditions (55). By 
ignoring terms with derivatives Ux, yy, (1 — cos uR)y in 
the equation for its x-projection and terms of the form 
Uy, yy, (1 — cos uR)y in the equation for its y-projection, 

two second-order equations that are once integrated 
on the variable x  are obtained. As a result, the first 
integrals are
X 1 Ux, x + (X 2 + X 3 ) Uy, y -  sxx( 1 -  cos uR) = c 0( y ) ,

П ----- 2 (56)
X 3 Uy, x = So, uR = M x  + uy •

Here, c 0(y), S0(y), s0,y are the integration constants 
(the arbitrary function y ) and derivative over this vari­
able. The last relation (a very simple one due to the 
smallness of the layer thickness) is integrated, and the 
expression for the component Uy is obtained:

X 3 Uy = So(y ) •
By differentiating it over y, the derivative Uy, y is found:

X 3 Uy, y = x S0, y(у ) •
By combining this with (56), the expression for the 

sum of derivatives (Ux,x + Uy,y) is obtained. Then on 
the basis of the definition in (50),

P  = p  -  S ( Ux, x + Uy, y) = ------(1 -  cos u)
X 1 -  P U

-  ScTqQQ S,(X 1 - X 2 - X 3 - p F 1 ) xSo + p
X 1 - p V  (X 3 - p V )(X 1 - p v1 ) ^ y

(57)

This formula is written in the final form with reference 
to dynamics when two waves of the macroscopic dis­
placements propagating along the 0 X  and 0 Y  axes are 
considered. Here, V1  and V2 are their velocities.

N o w  Eqs. (50) and (51) for microdisplacements 
can be analyzed. The following simplifications are 
useful for their integration. Trigonometric terms with 
a small multiplier lx in Eq. (50) are omitted and u is 
changed to uy and l is changed to unity in Eq. (51). As 
a result, the system

P ux «  M x , xx + X23 uy, xy, (58)
p uy ~ k 1 uy, yy + к 23 ux, yx + M y , xx -  P sin uy (59)

is obtained. In the first equation, the term ux, yy is also 
omitted due to the smoothness of the field along the 
layer and the smallness of the microdisplacement 
component ux in the transverse direction.

Let us move on to the dynamics of the stationary 
waves of microdisplacements. Ansatzes x  =  x  — v 1t, 
y  =  y  — v2t, where v 1, v2 are velocities of the waves of
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microdisplacements propagating along axes 0 X  and 
0 Y. Then Eq. (59) is rewritten as follows:

0 = K 1 xx + k23 uy, xy;
2

K 1 = k 1 -  p v 1; x  = x  -  v 1t ; y  = y  -  v 21.

Then it is integrated once on x , which reduces it to a 
simple first-order equation. After its differentiation on 
y , with its help it is possible to exclude from (59) the 
cross derivative ux, yx, which finally gives an equation of 
the sine-Gordon type

0 = K 4 Uy ,  x x  + K 23 Uy ,  y y  -  P  sin Uy ;

K 4 = k 4 -  p v 1; K 23 = k 1 -  p v 2 + 23 (60)
p v 1 -  k 1

2

7.2. Functionally Invariant Solutions 
o f  the Sine-Gordon Equation with the Variable Amplitude

When carrying out analysis of sine-Gordon equa­
tion (60) with a variable amplitude, it is reasonable to 
rewrite it in a more suitable reduced form:

д \  + д \  -  1 d 2uy
л 2  2 2  ̂ 2
d x d q v  д т

P (x , q ,T ) sinuy';

x  = x V K , y  = , t = T v V p .
(61)

The solution of Eq. (61) is searched for in the form
tan uy/4 = e (̂z’ ’̂ T). (62)

By substituting (62) in (61), we make sure that Eq. (61) 
is solved if the function ф(х, q, т) satisfies simulta­
neously two equations, the homogeneous wave 
equation,

It is important that, in front of the sine term, it has the 
coefficient P , which due to (57) turns out to be the 
function of coordinates. There are two equations for 
finding the fields ux(x, y), uy(x, y ), which can be 
received in the analytical closed form.

The sine-Gordon equation, generally speaking, 
appears in many fields of modern natural science. It 
simulates the deformation of the nonlinear crystalline 
lattice [7—12], orientation structure of liquid crystals 
[14], orientation of spins in ferromagnets [15], metrics 
of surfaces [16], etc. It also appears during simulation 
of processes occurring in the terrestrial cortex [17], in 
molecular biology [18], in models of the field theory 
[19], and in physics of elementary particles [20].

A r  the present time, effective methods of solving 
the sine-Gordon equation are elaborated. However, 
the majority of methods are developed with reference 
to the case P(x, y, t) =  const. This considerably limits 
the application of the sine-Gordon equation. In the 
mechanics of liquid crystals, the case P (x , y , t) =  const 
simulates the deformation of the long axes provided 
that the orientation continuum does not contain 
defects and the electromagnetic field is homogeneous. 
Otherwise P(x, y, t) Ф const. In differential geometry 
the sine-Gordon equation with P(x, y , t) =  const 
describes the metrics of the Chebyshev nets on the sur­
face with constant curvature. If  the curvature changes, 
then P(x, y, t) Ф const. In the mechanics of the nonlin­
ear crystalline lattice, the case of the constant ampli­
tude describes the deformation of the ideal lattice by 
the field of homogeneous stress. The deformation of 
the real lattice with the structure defects (dislocations, 
disclinations, nuclei of pores, cracks, etc.) by the field 
of inhomogeneous stress (deformations) is also 
described by sine-Gordon equation (48) with a vari­
able amplitude in form (60) alongside Eq . (46).

2 2 2с- ф + 5 j p  -  J _ d j P  = 0 , (6 3 )
/-.2 /-.f»2 2 л 2d x  d q v  д т 

and the eikonal equation,

The latter is the basic equation in geometric optics 
[20]. It describes the propagation of the wave surface 
(surfaces of the same phase) in medium with the inho­
mogeneous refraction coefficient of depending also on 
time. Equation (64) is studied in many papers [19— 
25]. The solution of Eq. (61) is also

tan uy /  2 = e (̂z’ ’̂ T),
provided that ф(х, q, т) satisfies simultaneously two 
equations,

2 2 2д ф + d_y -  д̂д_ф
/-.2 /-.f»2 2 л 2x q v  т

P (x > (65)

( 2 + ( дФ 
м3 xz

_L( dliP' = 0. (66)

Thus, integration of the sine-Gordon equation with 
the variable amplitude was reduced to finding the 
function p (x, q, т) which is simultaneously a solution 
of Eqs. (63), (64) or (65), (66). The most perspective 
approach to finding such a function is a method of the 
construction of the functionally invariant solutions of 
the differential equations.

The first way. The solution of Eq. (63) is present as
Ф = F ( a ) .

Here, F (a ) is an arbitrary function and the argument 
a (x , q, т) is the root of the equation linear on variables 
(x, q, т):

X l(a ) + qm (a )  -  v  тq (a )  + g (a )  = 0 (67)
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and the coefficients /(a), m (a), q(a), and g(a )  are 
arbitrary functions related by one condition,

/2 (a ) + m 2 (a ) = v 2q2( a ) . (68)
Taking into account (68), the solution of wave equa­
tion (63) is

Ф = F ( a ) , a  = т -  0 X ± Z  -  02, (69)
0 = const.

I f  02 < 1/v 2, the Ansatz is real and the solution of (69) 
is a planar wave. With the plus sign, the wave goes to 
the boundary of the semispace y  =  0, and with the 
minus sign, the wave goes from the boundary y  =  0. 
The real Ansatz allows one to build [19] functionally 
invariant solutions of the sine-Gordon equation with 
the constant amplitude (P  =  1). If  02 > 1/v 2, the real 
Ansatzes transfer to the complex-conjugate ones

Z = т -  0x -  ъ  1  -  02, l  = т -  0X -  iZ -1  -  02.2
v

Since the solution of the sine-Gordon equation is 
expected to be real, then the function

tan uy/4  = е*(хЛт), 

ф ( х Л т )  = 2- [ F ( Z )  + F (Z )]
(70)

is solution (61) with the amplitude

(a)

0
y

0

(b)

0 y

0

Р ( х Л т )  = (02 -  -1 ) F '( Z )F '( Z ). (71)

Here and below the stroke means the derivative on the 
argument. Since F(Z ) is an arbitrary function, (71) 
presents a wide class of amplitudes P (x , Z , т) for which 
(70) there is the solution of the sine-Gordon equation.

Figure 9 shows the spatial distribution of the effec­
tive barrier P(x, y , t) with a singularity in the point (a) 
and the corresponding localized perturbation of the 
field uy of the microdisplacements of atoms, which in 
a nonperturbed state had the form of the kink (b). 
Ansatz a  can be chosen in another way. For the sake of 
simplicity, assume that

vq  (a ) = 1, g(a) = 0.
Then the condition (68) holds if

/ = cos a , m = sin a . (72)
By substituting (72) in (67), find

X cos (a ) + Z sin a = v т ,

a  = ф± arccos— + 2n n ,  tan ф = Z ,
r  X

r = V x 2 + Z 2, n = 1, 2 ...  .

Fig. 9. Spatial distribution the effective barrier P(x, y, t) 
with the singularity in the point (a); the corresponding 
localized perturbation of the field Uy of the microdisplace­
ments of atoms which in the non-perturbed state had the 
form of the kink (b).

The direct calculation shows that

B (a )  2 2 2 2 2ф = A  (a ) + ——-, s = x + Z -  v  т (73) 
s

satisfies wave equation (63). Here, A (a ), B(a) are arbi­
trary functions. Equation (64) holds if

P (x , Z, т) = ^ a ^  (74)
s

Thus, (73) is a solution of the sine-Gordon equation 
with the amplitude (74). Note that in this case solu­
tion (73) and amplitude (74) turn out to be singular. A t 
the initial moment of time (т =  0), the singularity is 
found in the point (x  =  0, Z =  0), and in the following 
time moments it transforms in a circumference with 
the radius v ^
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Fig. 10. Spatial distribution the effective barrier P(x, y, t) 
with the singularity in the point (a); the corresponding 
localized perturbation of the field Uy of the microdisplace­
ments of atoms (b). The singularity spreads from the center 
in the form of the concentric circles.

Here is the second way. The Ansatz a (x , £,, x) is 
determined from the equation

w = Г(a )(x  -  Z (a ))  (76)

+ m '(a )(Z  -  n (a ))  -  v  q '(a )(x  -  a ) ,

z '( a ) ( X -  Z (a ))  + n '(a )(Z  -  n (a )) -  v2(x -  a ) .
Consequently, tan uy /4 =  еф(х’ ’̂ т) is the solution of the 
sine-Gordon equation with amplitude P (x , £,, x)-deter- 
mined relation (76). Note the simple particular cases 
of the found solution. Let

vq  (a ) = 1, l = cos p , m = sin p ,
Z = v  a  l , n = va m , p = const.

Then
n = x cos p + y  sin p -  v x , ct = vn , w = 0, (77)

2
a = f - , P ( x ,Z ,x )  = J ( a ) f ( a ) . (7 8 )

2 a a
It is seen from (77) and (78) that, in this case, the 
amplitude P (x , y , t) has a singularity on a line which 
spreads parallel to itself with the velocity v. If  0 =  0, 
the line degenerates into a singular point, which moves 
on the x axis with the velocity v. I f  0 =  я/2, the singu­
lar point moves on the £, axis. The second particular 
case is implemented if

Z (a )  = 0, n (a ) = 0, l(a ) = 1,
m (a) = i , q (a ) = 0.

Then

[x -  Z(a)]2 + [£ -  n (a)]2
= v 2(x -  a ) [ x -  Z ( a ) ] 2 + [ y -  n ( a ) ]2 
and the function

ф (Х ^  x) =

2v
(75)

( t -  a ) ,

n = x + i ̂ , a  = x — , w = 0, ctv
and ф is the Poisson wave function

f  (a )ф = - v - .
Х + i %

The real wave functions are

- v r

is constructed. Here,

n = l(a )(x  -  Z) + m (a )(Z -  n) -  v  q (a)(x -  a)
and l(a), m (a), q(a), Z(a ), n(a) and g (a )  are arbitrary 
functions related by the two relations

l( a )Z '(a )  + m (a )n '(a )  = v  q (a ) ,
/2 2 2 2l (a ) + m (a ) = v  q ( a ) .

The function ф(х, Z , x) satisfies wave equation (63) 
and eikonal equation (64) with the amplitude

P ( x T ,T )  = ^  w - f
2n no

Ф+(x, ^  x) = jf^ V r + X , r

ф-(x , z , x )  = f ( a - V r r x .

The functions (ф+, ф_) are the solutions of Eq . (64) if

P+ ( x T ,x )  = 4  + f f r + x ,
nr

P -  ( x T ,x )  = A  +
2r nr

Figure 10 shows the spatial distribution of the effective 
barrier P (x , y , t) with the singularity in the point (a)
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and the corresponding perturbation of the field uy of 
the microdisplacements of atoms (b). The singular­
ity spreads from the center in the form of concentric 
circles.

The found solutions of the sine-Gordon equations 
with the variable amplitude are built on basis of the 
function ф(х, £,, т) satisfying Eqs. (63) and (64). In a 
similar manner Eq. (61) can be solved on the basis of 
the function ф(х, £,, т), which satisfies Eqs. (65) and 
(66). A n  example of such an approach is given below.

The Ansatz a (x , £,, т) is once again chosen as the 
root of Eq . (75). It is easy to show that an arbitrary 
functionf (a) of the Ansatz a (x , £,, т) satisfies Eq. (66). 
Equation (65) is solved if

Р ( х Л т )  = . (79)a
The a value is determined by relation (65). Thus,

tan uy/ 2 = e (a) (80)

is the solution of Eq. (84) if  a(x, y , t) is the root of (75) 
and the amplitude P (x , £,, т) is (79).

The spatial distribution of the effective barrier 
P(x, y , t) with the singularity on the line (a) and the 
corresponding perturbation of the field uy of the 
microdisplacements of atoms (b) is given in Fig. 11. 
This simple example is used to show how the choice of 
the arbitrary function f (a) can be elaborated. Let 
expressions (57) and (79) be identical for the effec­
tive barrier P  determined by the given choice and the 
problem about the deformation of a thin layer. To 
this end, in formula (57) it is necessary to express the
term (1 — cos uy) first in terms of tanuy /2 and then in 
terms of the function f (a) according to (80)

1 -  cos uy 2tan2uy/2 = 2  ef(a)
,  ̂ 2 = /(a) -/(a).1 + tan uy /  2 e + e

By using this expression in (57) and equalizing it to the 
right-hand part of definition (79), the condition of the 
consistency of the expressions for the potential barrier,

f *  (a ) = -  I S 2 e/(a)
a -  pV 2 ef (a) + e- (a)

saay) s ^ - ^ - ^ - p v t) x „ , „
3 3 T  x  4  y + p

К  -  p V  ( К  -  p V2) ( К  -  p V l)
is found. It may be considered as the equation for 
additional definition of the arbitrary function f (a). It, 
just as Eq . (57), applies to dynamics,

P uy «  K 5uy yy + K 4 uy xx -  P s i n uy, K 5 = K r + K 23/ K .

10

P

(а)У 0

0

uy

10У
0

0

Fig. 11. Spatial distribution the effective barrier P(x, y, t) 
with the singularity on the line (a); the corresponding 
localized perturbation of the field uy of the microdisplace­
ments of atoms (b).

8. C O N C L U S I O N S
On the basis of the discrete-continuum model of 

the complex lattice proposed earlier, a theory of non­
linear waves in solid state that allows one to take into 
account in the long-wave approximation the cardinal 
changes of the lattice structure at deformation 
(mechanical striction) is developed. The structural 
changes are described by the field of the microdis­
placements of the neighboring atoms in the unit cell. 
In addition, the conventional macroscopic displace­
ments taking into account the motion of the cells 
themselves are introduced. The dynamic equations in 
the linearized classical variant are reduced to the 
known equations of the propagation of the acoustic 
and “ optical” modes established already in the works 
of Carman, Born, and Huang Kun. The variational 
approach proposed for the first time by E . and 
F. Cosserat (10 years before F. Klein and E . Neter) is 
generalized here to the translational internal degrees 
of freedom of the crystalline lattice.

The obtained nonlinear equations are related by 
the micromechanism of mechanical striction. As a 
result, the effect of the change of the interatomic
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potential barriers at the impact of the external stress is 
described, the appearance of the structure defects in 
the field of the critical stress, and their motion as 
localized waves, as well as relaxation, are predicted.

In  the developed nonlinear theory, the localized 
waves of the kink and soliton type describing the prop­
agation and relaxation of the defects of packing and 
dislocations, as well as their transition in the nonlinear 
periodic waves at the strong compression, are consid­
ered. They turn out to be solutions of the nonlinear 
sine-Gordon equation.

In the one-dimensional case, this equation has 
constant coefficients. The mechanism of mechanical 
striction depending on stress and striction coefficients 
is implemented in the phenomena of hardening (mak­
ing brittle) and weakening (plastification) of the crys­
tal. The appearance of slow subsonic, fast supersonic, 
and superfast waves of the optical mode is related with 
these phenomena. The mutual effect of the acoustic 
and optical modes (macroscopic and microscopic 
fields) leads to the nuclei of defects being the functions 
of the macroscopic stress and velocities of the modes. 
Moreover, both macroscopic and microscopic local­
ized wave packages describing the distortions of the 
macroscopic continuum and distortion of the micro­
structure appear.

The determinative parameter of the dynamic phe­
nomena is the effective potential interatomic barrier 
dependent on stress and propagation velocities. It has 
three values (three bifurcation points) that determine 
the limits of stability of the lattice experiencing in stat­
ics cardinal rearrangement depending on the value 
and sign of the external stress. In dynamics the depen­
dence of the potential barrier on the propagation 
velocity of the localized wave appears in addition. In 
particular, at a definite velocity, the periodic wave 
transfers to the localized one and vice versa. This pro­
cess of the rearrangement is characterized by the 
threshold values of stress. The conditions of the for­
mation of the quasi discontinuous waves are revealed.

The planar problems that require the analysis of the 
(2+1) sine-Gordon equations with the variable coeffi­
cients in front of the sine term are considered. This 
term is an effective interatomic potential barrier 
dependent on the external stress (macroscopic defor­
mations), which, as a rule, are functions of coordi­
nates and even time. The methods of building the solu­
tions corresponding to the generalized sine-Gordon 
equation are elaborated. A  series of its solutions 
describing the interaction of the localized nonlinear 
wave with the inhomogeneous perturbation of the 
above coefficient due to the structural changes of the 
crystal in the field of the external inhomogeneous 
stress is built. The methods of building similar solu­
tions were proposed earlier [26].
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