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Abstract— T h e  p a p e r  f o c u s e s  o n  t h e  d e v e l o p m e n t  o f  2 D  c o n t i n u o u s  m o d e l s  f o r  a  t h e o r e t i c a l  p r e d i c t i o n  o f  

d y n a m i c  p r o p e r t i e s  o f  d i s c r e t e  m i c r o s t r u c t u r e s .  A  n e w  c o n t i n u a l i z a t i o n  p r o c e d u r e ,  w h i c h  r e f e r s  t o  n o n l o c a l  

i n t e r a c t i o n s  b e t w e e n  v a r i a b l e s  o f  t h e  d i s c r e t e  m e d i a ,  i s  p r o p o s e d  a n d  t h e  c o r r e s p o n d i n g  c o n t i n u o u s  m o d e l  i s  

o b t a i n e d .  T h e  p e r f o r m e d  s t u d y  i s  b a s e d  o n  t h e  a p p l i c a t i o n  o f  c o m p o s i t e  e q u a t i o n s .  T h e  d e v e l o p e d  a p p r o a c h  

i s  s u i t a b l e  f o r  t h e  d y n a m i c  a n a l y s i s  o f  2 D  l a t t i c e s  o f  m i c r o -  a n d  n a n o p a r t i c l e s  o s c i l l a t i n g  w i t h  a r b i t r a r y  f r e ­

q u e n c i e s .
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I N T R O D U C T I O N
In recent years new classes of ultra dispersive and 

nanocrystalline heterogeneous materials are proposed 
[1 ] . Theoretical investigation of such structures 
requires new modern approaches that have to be prin­
cipally different from the classical continuous medium 
theory. This challenge is also characteristic for various 
problems of nanomechanics [2, 3]. Models established 
on a continuous medium approximation cannot gov­
ern high frequency oscillations, behaviour of the 
materials in the vicinity of cracks and on the fronts of 
destruction waves [4, 5], and during phase transitions 
[6]. Wave dispersion in granular materials [7, 8] repre­
sents an important example of microstructural effects, 
which are also essential in damage mechanics [9] and 
in the theory of plasticity [10, 11].

The mentioned effects may be analyzed within the 
frame of discrete models, using molecular dynamics, 
quasicontinuum analysis or others numerical 
approaches. However, evaluation of numerical results 
is very time-consuming. For example, modern practi­
cal problems are still intractable for molecular dynam­
ics based analysis, even if the highest computing facil­
ity is at disposal.

Hence, refinement of the existing continuum the­
ory for the purpose of more realistic predictions seems 
to be the only viable alternative. In connection with 
this, one of the most challenging problems in multi­
scale analysis is that of finding continuum models for 
discrete, atomistic models. Although in statistical

1 The article is published in the original.

physics these questions were already addressed 
100 years ago, many problems remain open even 
today. Most prominent is the question of how to obtain 
irreversible thermodynamics as a macroscopic limit 
from microscopic models that are reversible. In this 
paper we consider another part of this field that is far 
from thermodynamic fluctuation. We are interested in 
reversible, macroscopic limits of atomic models. 
Debye approach is the simplest model of this type, but 
it does not take into account spatial dispersion. More 
suitable is the Born-von Karman model of lattice 
dynamics, which is analogous to the case of a chain 
with only nearest-neighbour interactions.

Therefore, continuous modeling of micro- and 
nanoeffects plays a crucial role in mechanics [12, 13]. 
It seems that the simplest approach to realize this idea 
relies on a modification of the classical modelling 
incorporating both the hypothesis of continuity and 
the main characteristic properties of a discrete struc­
ture. Continualization procedures are based on vari­
ous approximations of a local (discrete) operator by a 
nonlocal (continuous) one. One can treat the govern­
ing difference operator as a pseudo-differential one 
and then split it in Taylor series. Keeping only the first 
term of the expansion, the classical continuous 
approximation is obtained. Taking into account more 
terms, the so-called intermediate continuous model, 
which includes a differential operator of the higher 
order, can be found. Using of one- and two-point Pade 
approximants gives a possibility to improve accuracy 
of the approximation with saving the lower order of the 
differential operator. Results for the 1D  case were
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Fig. 1. Chain of particles.
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obtained in [14—18]. The technique proposed can be 
easily generalized to those 2D problems that are still 
scalar in nature, i.e., that are reducible to a problem 
for a combination of uncoupled scalar potentials [19, 
20], Difficulties arising in the non-scalar case are dis­
cussed in [17]. In particular, it is shown that Pade 
approximants can not be applied; that is why in many 
papers [7, 8, 17] intermediate continuous models of 
higher orders were used.

In the present work, the technique of composite 
equations that was originally developed for a 1 D  case 
[21] is extended to 2D problems. As the result, this 
allows to derive new accurate continuous approxima­
tions of the lower order.

The paper is organized as follows. In Section 2, the 
main idea of the proposed approach is introduced on 
the basis of a discrete 1D  dynamical model. Continu­
ous models for the 2D case are obtained in Section 3. 
Section 4 presents brief concluding remarks.

(ii) Approximate those terms insofar as possible 
while retaining their essential character in the region 
of nonuniformity.”

The composite equation determined on the basis of 
Eqs. (2), (3) reads:4, 2 ,2  d2 ^d2 u v  , 2  d2 u A /лх

1  -  a h — I - -  K  h —  = 0 , (4)
dx 2 d t dx

where a 2 = 0.25 — n-2 »  0.1487.
Let us note that the same equation can be 

obtained using two-point Pade approximants [23]. 
Term with mixed derivative can be treated as the 
inertia of normal motion in equation of longitudinal 
vibrations of rod.

Equation (4) allows calculating the frequencies of 
discrete chain a k:

D I S C R E T E  1 D  D Y N A M I C A L  M O D E L
Let us consider free oscillations of a chain of parti­

cles displayed at Fig. 1. Input equations of motion can 
be written as follows

a  к = п I—
\Ш Г , n 2 2 2,2 л/( n + 1) + a n  к

к  = 1, 2, n .

(5)

M un (t) = K 1( un + 1 -  2 un + un -  1 ) , (1)
where un is the displacement vector for a particle situ­
ated at point x n, x n =  nh; M  is the particle mass; K 1 is 
the stiffness of the springs.

For large number of particles, a continuous 
approximation to the discrete problem (1) is usually 
applied:

2
M u tt(x, t) = K 1 h uxx(x, t) . (2)

The “ saw-tooth” oscillations (un =  — un _ 1) are 
described by the equation

M d- u + 4 K 1 u = 0 . (3)
d t2

Knowing the continuous approximations (1) and 
(2), it can be possible to construct a composite equa­
tion [21], which is uniformly suitable for all frequen­
cies and oscillation modes of the chain. Van Dyke 
emphasized that composite equations can be obtained 
by the synthesis of the limiting cases. The key idea of 
the method is [22, p. 195]:

“ (i) Identify the terms in the differential equations 
whose neglect in the straightforward approximation is 
responsible for the nonuniformity.

The largest error in determination of a k is about 
3%; it is achieved at к  =  [0.5(n + 1)], where [x] is the 
integer part of x . Let us note that Eq . (4) is of the 
second order with respect to the spatial coordinate,
i.e ., the essential improvement of accuracy is 
obtained without the increase in the order of the dif­
ferential operator.

Eringen [24] showed that the dispersion relation 
closely matches with the Born-von Karman model 
dispersion when a 2 = 0.1521. This value is very close to 
that proposed by Metrikine and Askes [25] on the basis 
of a certain physical interpretation; they also refer 
Eq . (4) as the “ dynamically consistent model.”

The dispersion curve obtained from Eq . (4) does 
not satisfy the condition d a k/d k  =  0 at the end of first 
Brillouin zone. O n  order to overcome this contradic­
tion, Eringen [26] (see also [27]) proposed so-called 
bi-Helmholtz type equation:

m 1 1 -  a 2h 2— 2 + p2h u tt -  K 1 h 2uxx = 0,
dx d x 2

where a  = 1/п.
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Fig. 2. Square lattice of particles [17].

D I S C R E T E  2D D Y N A M I C A L  M O D E L
Let us consider a square lattice of particles shown 

in Fig. 2. The input equations of motions are:
M u m, n = K 1( um, n -  1 — 2 um, n + um, n + 1)

ous displacement field u(xm, y n) =  um, n, v (xm, yn) =  
vm, n and expanding the components um ± 1, n ± 1, 
v m ± 1, n ± 1, into Taylor series around um, n, vm, n. The 
second-order continuous theory in respect to the 
small parameter h implies:

+ K 2 ( Um -  1, n 2 Um, n + Um + 1, n )

+ 2  K 0 (Um -  1, n -  1 + Um + 1, n -  1 + Um -  1, n + 1 + Um + 1, n + 1

+ v m -  1, n -  1 v m + 1, n -  1 v m -  1, n + 1
+ v m + 1, n + 1 -  4 Um, n ) ,

M v m, n = K 1( v m, n -  1 -  2 v m, n + v m, n + 1)

+ K 2 ( v m -  1, n 2 v m, n + v m + 1, n)

+ 2 K 0 ( v m -  1, n -  1 + v m + 1, n -  1 + v m -  1, n + 1 + v m + 1, n + 1

(6)

+ Um -  1, n -  1 Um + 1, n -  1 Um -  1, n + 1 
+ Um + 1, n + 1 -  4 v m, n ) ,

where um, n, vm, n are the components of the displace­
ment vector for a particle situated at the point (xm, yn), 
x m =  mh, y n =  nh; M is the particle mass; K0, K x and K2 
are the stiffness factors of the diagonal longitudinal, 
the axial longitudinal and the axial shear springs, 
respectively.

The commonly used continualization procedure 
for Eqs. (6) is based on the introduction of a continu-

2 2 2 
M d- uu = K 1 h2—  + K 2 h 2—  + 2 K 0 h

d t2 d x 2 d y 2

2 d2v  
d x  d y ’

2 2 2
M ^ - f  = K 1 k 2— . + K 2 h 2^  + 2 K 0h

d t dx  dy

2 d2u 
dx dy

(7)

One can construct equations of the higher-order in 
special variables, however, as it was shown in [1 7 ], it is 
not possible to create asymptotic theories that do not 
possess extraneous solutions in the non-scalar context.

The “ saw-tooth” oscillations of the 2 D  discrete lat­
tice can be described by the following equations:

(8)

The composite equation determined from the lim­
iting models (7), (8) is:

2 2  2,2 d 2,2 d -  a  h —- -  a h —-2 2  d x  d y '

d 2 u

d f
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/-.2 /-.2 /-.4t̂ / 2  d u , j 2 d u , v  , F w 4 2 d u = K 1h + K 2h ■—2 -  (K 1 + K 2)h Y
OX dy OX dy

+ 2K0 h 1 + 1 5
4 (K  + K 2 ) d t2

d2v
d x d y ’

m ( , 2,2 V 2.2 в 2 ЛЗ2 V1 -  a  h —- -  a  h —  I —
d x 2

(9)
2,2 d 2,2 

~2 d y2 d t2
/-.2 /-.2 /-.4jy j 2 d V v~\ / 2 d V / ^  7/ \ i4  2 d V

= K 1h — i + K 2 h —-2 -  ( K 1 + K 2 ) h Y T —2ox dy ox dy

+ 2K0 h 1+ 1 d
4 ( K 1 + K 2 ) d t2

d2 u
d x d y ’

where y2 =  (4 — я 2 + 8я2а 2)/(4я2).
Term with mixed spatial-time derivatives can be 

treated as the inertia of normal motion. In 1D  cases, 
expressions (9) are reduced to Eq . (4) for u and the 
same for v. In a case of small variability by spatial and 
time co-ordinates, Eqs. (9) can be approximated by 
Eqs. (7); in a case of large variability—by Eqs. (8).

C O N C L U S I O N S
Free oscillations of 1D  and 2 D  discrete structures 

are considered. New lower-order continuous models 
are obtained by the method of composite equations. 
Derived analytical solutions for the eigenfrequencies 
exhibit a high numerical accuracy. The results of the 
paper can be used for a theoretical prediction of 
dynamic properties of heterogeneous media with 
micro-and nanostructures. Generalization of the 
developed procedure to equations of bi-Helmholtz 
type [27] is a subject to further research.
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