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Abstract— For a two-dimensional irregular waveguide with a bottom in the form of a liquid half-space simu­
lating the coastal zone of a sea shelf, we present calculations on sound propagation at certain low frequencies 
taking into account the contribution of the integral over the Pekeris branch cut approximated according to 
the Zavadsky—Krupin technique. Calculations were conducted on the basis of causal matrix equations for the 
modes obtained in previous studies and that are equivalent to the equations of the cross section method. It is 
shown how, with a lowering of sound frequency, there is an increase in the contribution to the full field of the 
branch-line integral corresponding to a lateral wave. Features of transformation of the first propagating mode 
are established as the section of the cutoff is passed; in such a situation, we have an idea of the wave pattern 
of the exposure region of the waveguide beyond this section, where propagating modes are absent. As earlier, 
we perform a comparative analysis of the curves of losses during propagation, corresponding to the solution 
of exact equations and the description of approximating one-way propagation when allowing for and ignoring 
coupling of modes.
DOI: 10.1134/S1063771010050027

I N T R O D U C T I O N
In [1], numerical analysis was conducted of low- 

frequency sound propagation in an irregular two­
dimensional Pekeris waveguide with a hydrology cor­
responding to the real conditions of the coastal zone of 
an ocean shelf. Calculations were performed using the 
solution to a boundary-value problem for equations of 
the cross section method, which can be reduced to an 
equivalent evolutionary-type problem [2].

The latter represents the first-order matrix equa­
tions for acoustic modes over the horizontal coordi­
nate and considers all wave effects of mode coupling 
and backscattering. In [1], propagation and transfor­
mation of modes of a discrete spectrum were analyzed, 
which in the case of conducting a Pekeris branch cut 
on a complex plane of horizontal wave numbers к 
includes two families: propagating modes and leaky 
modes. From  the point of view of calculating the field, 
these families were quite enough for the situations seen 
in [1], supposing the presence of several propagating 
modes in the waveguide. However, since for a Pekeris 
waveguide, the full solution in addition to a discrete 
spectrum of the wave operator also includes the con­
tribution ofthe lateral wave, that is, a continuous spec­
trum к in the form of the branch-line integral [3], 
which is of considerable interest in studying such situ­
ations when the presence of a continuous spectrum in 
the solution is important. This paper is devoted to this

question, and the urgency of the given study is also 
dictated by interest in the processes by which the 
energy of modes is transformed at the water-bottom 
sediments interface [4, 5].

Note that in the available literature, we do not 
know of any studies for which an irregular Pekeris 
waveguide was simulated in a similar statement that 
takes into consideration the contribution of a contin­
uous spectrum. In the known approaches to numerical 
solution of mode wave equations for a medium with an 
irregular water-liquid sediments interface, the half­
space of sediments is replaced by the authors with a 
“ false bottom” model [3, 6]; that is, an absorbing layer 
is introduced with an absolutely reflecting lower 
boundary and a thickness that multiply exceeds the 
dimensions of the water layer.

This is an extremely inefficient method, because it 
leads to a sharp increase in the number of modes sub­
ject to consideration to describe the field in a 
waveguide (in this case, despite the presence of losses 
in a false bottom, all modes are weakly attenuating, in 
essence, propagating), especially as they approach the 
source. As an exception, note [7], in which, on the 
basis of a double-layer waveguide model, attention was 
paid in calculations to leaky modes and questions on 
allowance for the continuous spectrum were at least 
discussed. Also known are the results of asymptotic 
analysis of the process of propagating modes passing
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through the area o f the critical section, w hich are 
reflected, for example, in  [8, 9] (see also references in  
[9]). We will talk about them  briefly below.

BASIC EQUATIONS
First, for convenience we will briefly form ulate the 

equations underlying num erical sim ulation, w hich are 
considered in  detail in  [1, 2, 10]. I f  we im agine the 
fields o f  acoustic pressure p  and horizontal velocity v  
excited in  a tw o-dim ensional waveguide (x, z; x  is the 
horizontal Cartesian coordinate) by a linear source 
5(x — L )5(z — z0) o f frequency ю by m eans o f local­
m ode decom position o f the cross section m ethod,

P (x , z ) = ^  Фi (Л z)G, (x ) ,
l

v (x, z) = [гюр(x, z ) ]-1^ Ф, (х, z)g i (x ),
l

(1)

th en  for m ode functions Gm(x), gm(x), m =  1, 2, ..., the 
following m atrix equations over param eter L  e  (L0, L) 
corresponding to the position o f the right section o f 
the waveguide dem arcating the irregular and layered 
areas o f the m edium  are valid:

[Gm ( x ; L )] = - G ^ m (L , zo)] ,

[gm ( x ; L ) ]  = - g [ Фm( A  zo) ] ;

G (x ; L ) = G (x ; x ) exp
L

I dn[[iк ( п ) -  VT (n )]
x

+  i[(K (n )V (n ) +  v T( п ) к ( п ) - к '( n ) ] G ( n ; n ) ] к

— G(L ; L ) = i [K(L )G(L ; L ) + G(L ; L )K (L )] 
dL

-  G (L ; L ) VT( L ) -  V( L ) G (L ; L ) -  E  

+ iG(L ; L )[(K (L ) V(L )

+ VT(L ) к (L ) -  K'(L ) ] G(L ; L ), (2a, b)

G(L ; L ) \L = L0 = K-1(Lo)/ ( 2 i) .

In  (1), (2), the vector o f the norm alized eigenfunc­
tions [ фm (x, z)] w ith the dom ain o f determ ination Э  e 
(h, H) in  each x-section  satisfies a problem  on eigen­
values (EV) for a m edium  w ith variable density p(x, z) 
in  the general case, and boundary conditions at b o t­
tom  h and surface H  correspond to requirem ents on 
the pressure and velocity fields.

Also, K (x) =  {Km(x)} is the  d iagonal m atrix  o f 
local EVs, K' (x) is th e  d iagonal m atrix  o f  derivatives

o f EVs, E  is a u n it m atrix , V  =  {Vml(x )} =

Г ^ (x , z) d-P-A’ z) dz  is a m atrix describing m ode
A  p(x, z ) dx

coupling, and VT(x ) is the transposed m atrix V  arising 
in  the equations because o f variable density [1]. We 
consider th a t the irregular field occupies a part o f the 
space (L 0 < x  < L ) outside o f w hich the m edium  is lay­
ered, boundaries L , L 0 are m atched  [2], and the source 
is located in  a w ater layer in  the right section x 0 =  L . 
E quation  (2b) describes a backscattering  m atrix
R  (L ; L ) =  2i K (L ) G (L ; L ) — E . I f  backscattering 
can  be neglected , the  approx im ation  o f  one-w ay 
p ropagation  (OW P) is valid, the  so lu tion  for w hich

at G (x ; x ) =  K-1 (x ) /(2 i) is given by the simplified 
quadrature (2a). T he adiabatic approxim ation is pos­
sible later, assuming m atrices V(x ) =  {0}, V^ x ) =  {0}.

D IS C R E T E  APPRO X IM A TIO N  
O F T H E  LATERAL WAVE

M ode approach (1), (2) to the solution o f 2-D  
problem s obviously assumes the presence o f a discrete 
spectrum  o f the wave operator. However, as was noted 
above, for m odels o f a m edium  w ith  a bo ttom  in the 
form  o f the half-space o f sedim ents, w hich is w hat the 
Pekeris waveguide in  particular is, the solution also 
includes the contribution from  the continuous spec­
trum  o f values K in  the form  o f the integral over the 
b ranch  cut. T he b ranch  cu t is conducted  in  a particu­
lar way from  a b ranch  point owing to the presence in  
the bo ttom  conditions o f the double-valued radical

( k 2t — K2)1/2, w here k x is the wave num ber in  liquid sed­
im ents. Since we will be considering conducting the 
b ranch  cu t on  a com plex plane o f wave num bers K
according to Pekeris, such tha t R e (k2 — K2) =  0, 
Im k  e (0, да), the sound field will be reduced to the 
sum  o f propagating and leaky m odes and the b ranch­
line integral. Clearly, in  the conditions o f an  irregular 
waveguide, direct allowance for the branch-line in te ­
gral is inconvenient for calculations; a natural way o f 
including it in  the above-described approach (1), (2) is 
prelim inary discrete approxim ation. For this purpose 
the procedure suggested in  [11, 12] for layered 
waveguides has been used. A ccording to it, the half­
space o f sedim ents is replaced by a m odeling layer o f 
finite thickness w ith  a com plex m etric o f h — h0 =  
|h — h0 |exp(in/4 )  and an  absolutely rigid lower bound­
ary o f h0. Thus, the spectrum  o f the operator o f the 
problem  becom es purely discrete, and the emerging 
family o f new m odes, w hich for brevity we conve­
niently term  cut modes, corresponds to  the integral 
over the b ranch  cut. N ow  for a sound field, we have 
representation (1) w ith th ree families o f m odes, the 
eigenfunctions (EFs) o f w hich  are determ ined  w ithin  
the  dom ain  (H, h0). It has been  show n [12, 13] th a t

ACOUSTICAL PHYSICS Vol. 56 No. 5 2010



THE CONTRIBUTION OF A LATERAL WAVE 615

- ( H -  h) ,  m

0 . 2
x ,  m

0 . 4

R e  к

Fig. 1. Model of irregular Pekeris waveguide. Horizontal 
dotted lines in the upper drawing correspond to the posi­
tions of the bottom in [1] at x < 60 m for a frequency of 
32 Hz and x < 20 m for a frequency of 105 Hz. The dashed 
line shows the introduction of lower boundary h0 of a layer 
with a complex metric. S is the arrangement of the source.

Fig. 2. EV кт [m for the model in Fig. 1 in the source 
section, f  = 105 Hz. “*” is кт propagating and leaky 
modes, “o” is кт  cut modes.

convergence  o f  th e  given a p p ro x im a tio n  to  th e  in te ­
g ral is u n ifo rm , an d  its accu racy  p ro m p tly  increases 
~ |h  — h01-3, slow ing dow n o nly  in  th e  case o f  c u to ff fre ­
quencies o f  th e  w aveguide o f  ~ |h  — h01-1. As a resu lt, it 
is possible to  restric t ca lcu la tions to  a reasonab le  vo l­
um e fo r d ifferen t re la tions o f  th e  w aveguide p a ra m e ­
ters a n d  sou n d  frequency  o f  in terest. A n  im p o rta n t c ir­
cum stan ce  fo r ca lcu la tions is th a t th e  fam ily  o f  th e  
po les app rox im ating  th e  b ran ch  cu t an d  being  th e  EVs 
o f  a new  fam ily o f  m odes, appears separa ted  in  th e  best 
way o n  a com plex  p lan e  from  th e  EVs o f  p ropagating  
an d  leaky m odes. O n  th e  basis o f  th e  aforesaid , we will 
co n sid e r p ro p ag a tio n  o f  low -frequency  sound  to  a 
doub le-layer irregu lar w aveguide w ith  a  liqu id  b o tto m , 
explored  in  [1], on ly  now  we will p ro long  th e  w a te r -  
liqu id  sed im en ts in terface  h(x) a lm ost to  th e  coastline  
(H  — h =  1 m ), an d  we rep lace th e  half-space  o f  sed i­
m en ts  w ith  a com plex  layer h -  h0 (Fig. 1). We take 
w aveguide p a ram ete rs  sim ilar to  [1]: velocities o f  
sound  in  water, c =  1500 m /s ; in  b o tto m  sed im en ts, 
c l =  1650 m /s ; th e  density  ra tio  is m p =  p j /p  =  2; 
up tak e  in  th e  b o tto m , в =  0.005. We will choose  
acoustic  frequencies for sim u la tio n  o f  10, 32 , and  
105 H z.

F irst o f  all, we will exam ine th e  features o f  th e  new  
fam ily o f  EVs co rrespond ing  to  th e  b ra n c h  cu t. As an  
exam ple, Fig. 2 shows th e  lo ca tio n  o n  a com plex  p lan e  
o f  EVs for all fam ilies o f  m odes p resen t in  th e  p ro b lem  
a t a  frequency  o f  105 H z  in  th e  sec tion  o f  th e  
w aveguide w ith  a d ep th  o f  100 m . In  th is  case, th e re  are 
six p ropagating  m odes an d  eigh t leaky m odes w ith

R e к m > 0 an d  cu t m odes.

F o r d em o n stra tio n , Fig. 2 shows 12 poles ap p ro x i­
m ating  th e  b ran ch  cu t a t |h — h 01 =  100 m  lying n ea r 
line R e k 1. S ince th e  given poles к т  have an  im ag inary

p a rt increasing  w ith  n u m b er к  m > 0, th e  cu t m odes 
co rrespond ing  to  th e m  are d am p ed  w h en  rem oving 
from  th e  source, ju s t like leaky m odes transferring  
energy  to  th e  b o tto m  (only  th e  law  o f  falling o ff  o f  a 
la teral wave m o re  slowly th a t for leaky m odes). T h is 
p ro p erty  d e te rm in ed  th e  n u m b er o f  m odes ap p rox i­
m ating  th e  in teg ral over th e  b ran ch  cu t necessary  d u r­
ing sim u la tio n  in  a layered p ro b lem  (a t a co n stan t 
d ep th  o f  th e  w aveguide). F o r th e  irregular w aveguide, 
th e  s itu a tio n  is m o re  d ifficult, because o th e r  factors 
also play a role. F igure  3 gives a rep re sen ta tio n  o f  th e  
shape o f  фm (^) for th e  cu t m odes. I t is seen  th a t these 
E Fs are significantly  less in  am p litu d e  th a n  th e  E F s o f  
usual m odes an d  have a m ax im u m  n ea r th e  b o tto m  
w hich  is increasing ly  expressed w ith  an  increase in  
num ber. As a resu lt, th e  la te ra l wave ap p ro x im ated  by 
th e  sum  o f  th e  cu t m odes sounds m ain ly  th e  n e a r-b o t­
to m  area, a lthough  w ith  decreasing  frequency  an d  
red u c tio n  in  th e  d ep th  o f  th e  w aveguide, a large p a rt o f  
th e  w ater is h igh ligh ted  (low er inse t to  Fig. 3). T h e  
th ick e r th e  m odeling  layer |h — h01, th e  m o re  fre­
quen tly  th e  po les o f  th e  b ran ch  cu t w ill be s itua ted  o n  
th e  curve in  Fig. 2, w h ich  com bines th e m  w ith  each  
o th e r for visual conven ience; however, a t th e  sam e 
tim e , th e  co rrespond ing  E F s ф m (^) in  Fig. 3 will have 
a sm aller am plitude . N o te  th a t in  [11—13], generally  
speaking, th e re  are n o  restric tions from  below  o n  
q u an tity  |h — h 01 o f  th e  m o d el layer in  co m p ariso n  w ith  
th e  p a ram ete rs  in  th e  p ro b lem , excep t for those  th a t
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105 Hz, H  — h = 100 m, \h — h0\ =  100 m

Re y j ,z )

Fig. 3. Dependence on depth of EFs y m(z) = (H — h)1/2 фm (z) in the water layer of the model in Fig. 1 in the source section. f = 
105 Hz, \h — h01 = 100 m. 1c..,5c, first five cut EFs. In the upper inset, for comparison, the EFs of the first propagating modes 1p 
and 2p are shown. In the lower inset, the cut EFs at a depth of 10 m.

concern  the accuracy in approxim ating the branch  cut 
given above.

C alculations show, however, that the given param ­
eters should optim ally be |h — h01 » 6—7 wavelengths o f 
sound X. In  this case, a com prom ise is reached 
between the num ber o f necessary cut m odes, w hich 
should be as small as possible, and the accuracy o f the 
approxim ations. The m ain  conclusions regarding the 
contribution o f a lateral wave, w hich can be m ade with 
reference to  a layered waveguide in accordance with 
[13] and on  the basis o f  Figs. 2 and 3, are as follows.

In  the situation  w hen there are several p ropagat­
ing m odes, th e ir field dom inates at m edial and  long- 
range distances, and  near the source, the co n trib u ­
tio n  o f leaky m odes is also im portan t. T he presence 
o f cu t m odes approxim ating a con tinuous spectrum  
thus does n o t change the  wave p a tte rn  and can  be 
disregarded (fo r exam ple, in the  waveguide in Fig. 1 
at f » 100 Hz). Even the presence o f only the first 
propagating m ode considerably masks the contribu­
tion  o f the lateral wave; however, in  such a situation, it 
is already noticeable in the transition  region from  the 
nearest field to the farthest, and for its correct descrip­
tion, only the first several least attenuating cut m odes 
are necessary.

Finally, the branch  cut contribution cannot be 
neglected in the case w hen propagating m odes are not 
excited in a waveguide, since only leaky m odes do not 
correctly describe the wave field (for example, Fig. 1 
for f  < 10—20 Hz). As well, there is an  increase in the 
num ber o f cut m odes necessary for a correct represen­
tation  o f the contribution from the continuous spec­
trum ; however, in m ost cases, this num ber does not 
exceed 10—15, w hich is at least ten  tim es less than  
required for false-bottom  models. We will further rely 
on these conclusions when analyzing sound propaga­
tion  in an irregular waveguide.

RESULTS O F  C A LCU LA TIO N S 
FO R  A N  IR R E G U L A R  W AVEGUIDE

As follows from  quadrature represention (2a), 
except for the im aginary part Km(x), the exponent o f 
the exponential curve o f the solution will be also 
described by m atrices o f m ode coupling V(x), VT(x). 
For the considered waveguide w ith constant sound 
velocity in  layers (Fig. 1), in  Eqs. (2), it is possible to 
express the m atrix coefficients in an analytical form  
through a derivative o f depth  H (x) =  H  — h(x), the EFs
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1 0  H z ,  P e k e r i s  w a v e g u i d e

Fig. 4. Dynamics of the real part Km(x) [m 1] for the model in Fig. 1, f  = 10 Hz, \h — h01 = 1000 m. 1c...9c, nine cut EVs. 1p is the 
EV of the propagating mode, and 1lk...3lk are the EVs of three leaky modes. The dashed line corresponds to Re k1.

at the bo ttom  ф m (x, h) and difference in  EVs, so

{Hml(x)| ~ H '(x)ф m (h (x ))ф i (h (x ))/(К2 -  Km ) [1].
Thus it is clear that the smallness o f quantities in 

num erator at certain  x  can be com pensated by the 
small difference in the EV o f the denom inator, w hich 
can lead to  weakening in the signal attenuation  factor 
w ith distance for m odes in the waveguide, as well as for 
the first num bers o f cut m odes. F rom  the physical 
po in t o f view, this m eans the possibility o f effective 
redistribution o f sound energy between m odes o f dif­
ferent families. Figures 4 and 5 show the behavior o f 
some EV families o f m odes in the waveguide in Fig. 1 
for a low frequency 10 H z, well illustrating the 
expected features o f generation o f the field. The bold 
curve o f eigenvalue 1p shows how a propagating m ode 
generated by a source in section x  =  680 m  passing 
through the critical section at x  »  600 m  transform s 
w ith a sharp reduction in am plitude (like the example 
in Fig. 3) to  a cut m ode (EV 1c). In  the interval o f 
430 m  < x  < 600 m , the sound field in a water layer is 
generated by the cut m odes and, to  a lesser extent, 
leaky m odes 21k, 31k .... A t a distance o f x  »  430 m, 
conditions appear for em ergence o f a leaky m ode, and 
one o f the cut m odes with substantial growth in am pli­
tude will be transform ed to  the first leaky m ode 
(EV 1lk, bold curve). Thus, in the adiabatic consider­

ation by m eans o f cut m odes, the continuous transfor­
m ation of the first (fundam ental) m ode propagating in 
the waveguide into a leaky m ode beyond the critical 
section is described, as well as gradual transition o f 
sound energy from the water layer into bo ttom  sedi­
m ents and its concentration  near to interface h(x). The 
m ode transform ation process occurs at an interval o f  
Ax » 170 m. N um bers o f the cut EVs related to those 
corresponding for m odes 1p, 1lk are thus fairly con ­
ventional enough, since they are determ ined by the 
chosen value |h — h01 o f a m odeling layer. F rom  the 
viewpoint o f  a m ore exact theory considering m ode 
coupling in an  irregular waveguide, area Ax is also 
rem arkable in its convergence o f different EV families, 
w hich leads to  intensification o f interm ode in teraction 
and, as a consequence, redistribution o f m ode energy. 
So, m ode 1p during transform ation to  cut m ode 1c will 
be effective for in teracting  w ith cu t m odes 2c and  4c, 
and leaky m ode 1lk in its appearance is strongly related 
to  profile m odes 4c and 6c. The result o f  the given 
qualitative analysis is supported below by the calcula­
tions o f Eqs. (1), (2). Figure 6 shows the curves o f relative 
intensity I  o f the sound field in decibels as functions o f 
distance x  for three observation horizons, and Fig. 7 
shows the relative amplitudes p m =  |фm (x, z)Gm(x)/p01 
for a series o f m odes determ ining the field in a
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Fig. 5. The same as Fig. 4, the dynamics of the imaginary part Km(x) [m 1].

waveguide. It is well seen that in comparison to the 
adiabatic approach when modes do not couple, the 
propagating mode during departure from a source 
starts to give up sound energy to cut modes and leaky 
modes 21k  and 31k, which intensify and exchange 
energy with the leaky mode arising at x »  430 m, 
which also considerably intensifies. The given mode 
actually determined the field in a waveguide at x  < 430 m. 
Owing to the power exchange between modes, curves 
of losses for the approximation of one-way propaga­
tion (OW P) lie 8—12 dB above the “ adiabatic” ones. 
The O W P theory (thin curves) well describes the 
fields of modes of pressure and transmission loss 
(good for intensity!) in a waveguide except for dis­
tances x  < 130 m. Here, the backscattered field 
reaches 3—4 dB, and the difference in OW P from the 
exact solution becomes appreciable. To the right of the 
source, the difference is less than 1 dB. Thus, in the 
irregular area of a waveguide, the given variation is 
determined mainly by backscattering of the first leaky 
modes, and to the right of a source, a single propagat­
ing mode. Certainly, the cut modes contribute to back- 
scattering, however, to a very small degree, since the
derivative corresponding to EVs к 'm (x) (as well as for a 
propagating mode [10]) is small; in addition, in full 
field, this is imperceptible because of the relative 
smallness in amplitudes of the given modes. For this 
reason, in [1], in studying backscattering in a two­
dimensional Pekeris waveguide, only propagating and 
leaky modes were considered.

These laws are observed for even an higher fre­
quency of 32 H z . In this case, it is seen from Fig. 8 that 
the interval Ax of essential transformation of modes 
and the intermode power exchange is shifted to the 
coastline. The cutoff section of the first mode is 
located now at x  »  57 m, and the leaky mode arises at 
x  »  47 m, that is, Ax »  10 m, having decreased almost 
20 times in comparison to f  =  10 H z . These features 
are observed in the illustration of intensity losses in 
Fig. 9 in the form of sharp, to 30 dB (the left insert to 
Fig. 9), drops in the curves of the adiabatic theory 
compared with other dependences. O n  even larger 
parts of the irregular waveguide, exact and approxi­
mate dependences are in quite good agreement, which 
was established and discussed in [1]. The right inset to 
Fig. 9 presents the dashed curve from this work for a 
depth of10 m, constructed by summation of propagat­
ing and leaky modes for the hydrology in Fig. 1 with 
the bottom shown by the dotted line at x  < 60 m. 
Apparently, the presence of cut modes is observed not 
only in the area of substantial redistribution of mode 
energy, but also in those areas of a waveguide where 
interference minimums of intensity form, which 
within several decibels can be both smoothed by pres­
ence of a lateral wave (for example, in the areas of x  »  
285, 370, 490 m) and to be accentuated (x »  445).

With further increase in frequency the new effects 
are not observed. So, for 105 H z , the first propagating 
mode transforms to a leaky by means of cut modes at 
x  »  17.5 m at an interval Ax »  3 m. Only in this area of 
the waveguide near the coastline x  < 18 m presence of 
a lateral wave will be appreciable. Note that in an
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Fig. 6. Curves of transmission losses for the model in Fig. 1. f  = 10 Hz. Level of curves is referenced to the value of pressure field 
p0 in the free medium at a distance of 1 m from the linear source (p0 = iHq1 (k)/4). Observation horizons are designated in the 
figure. A source at a depth of 50 m in section x0 = 680 m. Bold curves, exact solution (1), (2); thin solid curves, OWP; dashed 
curves, adiabatic theory. \h — h01 = 1000 m.

irregular waveguide, transition of second and higher 
numbers of propagating modes into corresponding 
leaky (the opposite is also valid) occurs continuously 
within the limits of calculation accuracy, “ media­
tion” of cut modes is not required for this. In such 
sections, there is only convergence of EVs of differ­
ent families, leading to more intensive intermode 
power exchange.

Here it is pertinent to briefly compare the sounded 
results to those of the aforementioned studies [8, 9], in 
which within the limits of the adiabatic approach and 
asymptotic analysis, the transition process of a propa­
gating mode through the critical section of a 
waveguide is described. In the given studies, the con­
cept of leaky modes and (integral) cut modes is not 
involved, and by means of Airy functions and their 
derivatives, continuation of a field of a propagating 
mode for the area of the critical section is carried out. 
O n  this basis, a qualitative deduction is made about 
strong coupling of this mode with continuous spec­
trum waves (in [9], it is actually only a question of the 
contribution of a branching point) in the neighbor­
hood of the critical section and the departure of its 
energy into the bottom (see also [4, 5]). The above 
illustrations of calculations testify to the fact that at

low frequencies (10 H z , Figs. 6, 7) from the quantita­
tive point of view taking into account the leaky 
modes and cut modes, even the adiabatic depen­
dences do not drop off rapidly beyond the area of the 
critical section, and transition of sound energy into 
bottom sediments is characterized by sufficient grad­
ually. Even more significantly, this process is slowed 
down within the limits of the more exact theory con­
sidering mode coupling. In the latter case, rapid fall­
ing off of curves it is not observed even for higher fre­
quencies (32 H z , Fig. 9).

In summary, we point out that to obtain the depen­
dences presented in Figs. 6, 7 , 9, Eqs. (2) for 10—15 
cut modes and 4—5 propagating and leaky modes 
depending on frequency were numerically solved. In 
addition, in obtaining field (1), we took into account 
35 highest leaky modes in the adiabatic approximation 
for the description of intensity in the immediate 
neighborhood of the source.

C O N C L U S I O N S  A N D  D IS C U S S IO N
In the present study, we suggest the results of calcu­

lations on propagation of low-frequency sound in an 
irregular double-layer waveguide with homogeneous

ACOUSTICAL PHYSICS Vol. 55 No. 5 2010



620 G U LIN

Fig. 7. Dependences on distance in decibels for absolute values of individual modes, normalized to quantityp0 = iH0 1 ̂  (k)/4 for
horizon H  — г = 10 m. f  = 10 Hz. Bold curves, the exact solution (1), (2); thin solid curves, OWP approximation; dashed curves, 
adiabatic theory. Upper inset, cut modes 3c, 6c, 7c. Lower inset, leaky modes 2lk, 3lk compared with the mode 1p transforming 
to the cut mode 1p. \h — h01 = 1000 m.

water and a liquid bo ttom  taking in to  account the co n ­
tribution o f the Perekis branch-line integral, which 
corresponds to  a continuous spectrum  of the wave 
operator, w hich is involved in the problem . The given 
integral has been approxim ated by a discrete family o f 
m odes according to  the procedure suggested by 
V. Zavadskii and V  K rupin in the case o f a layered 
m edium , after w hich sim ulation is conducted on the 
basis o f  solving the earlier evolutionary m atrix equa­
tions for the m odes. These equations are equivalent to  
a boundary-value problem  in the horizontal direction, 
posed w ithin the limits o f the cross section m ethod. It 
is shown that w hen, in an irregular waveguide, there is 
a cu toff o f the first propagating (fundam ental) m ode, 
its energy does no t “disappear,” but passes to  cut 
m odes approxim ating the contribution o f a con tinu ­
ous spectrum . These m odes describe a lateral wave 
that propagates prim arily in the near-bottom  area, re ­
em itting part o f the sound energy into bo ttom  sedi­
m ents via a leaky m ode arising in some section. For all 
intents and purposes, the sound field in the range o f 
distances D  between the critical section o f the funda­
m ental m ode and the coastline is generated by the 
given leaky m ode and the first slowly attenuating cut

m odes. Owing to the strong m ode coupling in the 
neighborhood o f the critical section, this field is not 
small or rapidly falling, as the adiabatic theory supple­
m ented by asym ptotics predicts [8, 9]. In  actuality, 
sufficiently slow de-excitation o f sound energy occurs 
from the waveguide in to  bo ttom  sedim ents. A lthough 
in the coastal zone o f a sea shelf, for any frequency, 
there is a critical section cutting the fundam ental 
m ode, the given effect o f redistribution o f sound 
energy between m odes o f different families is the m ost 
substantial in a frequency range lower th an  10—20 Hz. 
In  this case, the m entioned interval o f distances D  
reaches hundreds o f m eters. At frequencies o f 100 H z 
and above, area D  narrows to  tens o f m eters, hugging 
the coastline. In  this case, the presence o f a con tinu ­
ous spectrum  in the problem  manifests itself only in a 
narrow  range o f distances, sm aller th an  several metres. 
Thus, the conclusion is confirm ed about the possibil­
ity o f neglecting the contribution o f the integral over 
the Perekis branch  cut in a water layer at frequencies o f 
f  ̂  100 Hz [13] if the small part o f the waveguide near 
the coastline (beyond the critical section) is o f no 
interest. N ote that from  the viewpoint o f allowance for 
backscattering, the law is the opposite. So in [1] it is
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32 Hz, \h -  h0\ = 300 m

x, m

Fig. 8. Dynamics of EVs Km(x) [m 1] for the model in Fig. 1, f  = 32 Hz, \h — h01 = 300 m. 1c...7c, the first seven cut EVs. 1p is the 
EV of the first propagating mode; 1lk...3lk are the EVs of the three leaky modes.
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shown that the contribution of a backscattered field 
increases with increasing frequency to 100 H z , 
whereas for 10 H z  it does not exceed 3—4 dB (in pres­
sure intensity) and for the waveguide in Fig. 1, the 
contribution is localized in the area with a steeper bot­
tom incline.

It is noteworthy that in the literature, one more 
method of approximating the Perekis branch-line 
integral is known. It is suggested in [14] for describing 
broadband signals in a layered waveguide, and it 
assumes the introduction of a linear refraction index 
with a complex gradient in the half-space of liquid 
sediments. As well, instead of a branch cut, there arises 
a certain discrete family of EVs. The given method in 
solving the matrix equations suggests dealing with 
multiple calculation in the coefficients of combina­
tions of A iry functions and their derivatives. In the 
procedure [1 1 —13], which is used in our study, only 
elementary functions figure in the coefficients, but 
in addition, sufficiently fast convergence of similar 
discretization to the contribution from the branch­
line integral is proved. The comparative simplicity of 
this procedure in respect to the half-space approxi­
mation makes it possible to use it for studying irreg­
ular waveguides with more complicated bottom 
models taking into account the stratification of 
parameters and elastic properties in the upper sedi­
ment layers.
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