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Abstract— For a two-dimensional irregular waveguide with a bottom in the form of a liquid half-space simu-
lating the coastal zone of a sea shelf, we present calculations on sound propagation at certain low frequencies
taking into account the contribution of the integral over the Pekeris branch cut approximated according to
the Zavadsky—Krupin technique. Calculations were conducted on the basis of causal matrix equations for the
modes obtained in previous studies and that are equivalent to the equations of the cross section method. It is
shown how, with a lowering of sound frequency, there is an increase in the contribution to the full field of the
branch-line integral corresponding to a lateral wave. Features of transformation of the first propagating mode
are established as the section of the cutoff is passed; in such a situation, we have an idea of the wave pattern
of the exposure region of the waveguide beyond this section, where propagating modes are absent. As earlier,
we perform a comparative analysis of the curves of losses during propagation, corresponding to the solution
of exact equations and the description of approximating one-way propagation when allowing for and ignoring

coupling of modes.
DOI: 10.1134/81063771010050027

INTRODUCTION

In [1], numerical analysis was conducted of low-
frequency sound propagation in an irregular two-
dimensional Pekeris waveguide with a hydrology cor-
responding to the real conditions of the coastal zone of
an ocean shelf. Calculations were performed using the
solution to a boundary-value problem for equations of
the cross section method, which can be reduced to an
equivalent evolutionary-type problem [2].

The latter represents the first-order matrix equa-
tions for acoustic modes over the horizontal coordi-
nate and considers all wave effects of mode coupling
and backscattering. In [1], propagation and transfor-
mation of modes of a discrete spectrum were analyzed,
which in the case of conducting a Pekeris branch cut
on a complex plane of horizontal wave numbers k
includes two families: propagating modes and leaky
modes. From the point of view of calculating the field,
these families were quite enough for the situations seen
in [1], supposing the presence of several propagating
modes in the waveguide. However, since for a Pekeris
waveguide, the full solution in addition to a discrete
spectrum of the wave operator also includes the con-
tribution of the lateral wave, that is, a continuous spec-
trum x in the form of the branch-line integral [3],
which is of considerable interest in studying such situ-
ations when the presence of a continuous spectrum in
the solution is important. This paper is devoted to this

question, and the urgency of the given study is also
dictated by interest in the processes by which the
energy of modes is transformed at the water—bottom
sediments interface [4, 5].

Note that in the available literature, we do not
know of any studies for which an irregular Pekeris
waveguide was simulated in a similar statement that
takes into consideration the contribution of a contin-
uous spectrum. In the known approaches to numerical
solution of mode wave equations fora medium with an
irregular water—liquid sediments interface, the half-
space of sediments is replaced by the authors with a
“false bottom” model [3, 6]; that is, an absorbing layer
is introduced with an absolutely reflecting lower
boundary and a thickness that multiply exceeds the
dimensions of the water layer.

This is an extremely inefficient method, because it
leads to a sharp increase in the number of modes sub-
ject to consideration to describe the field in a
waveguide (in this case, despite the presence of losses
in a false bottom, all modes are weakly attenuating, in
essence, propagating), especially as they approach the
source. As an exception, note [7], in which, on the
basis of a double-layer waveguide model, attention was
paid in calculations to leaky modes and questions on
allowance for the continuous spectrum were at least
discussed. Also known are the results of asymptotic
analysis of the process of propagating modes passing
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through the area of the critical section, which are
reflected, for example, in [8, 9] (see also references in
[9]). We will talk about them briefly below.

BASIC EQUATIONS

First, for convenience we will briefly formulate the
equations underlying numerical simulation, which are
considered in detail in [1, 2, 10]. If we imagine the
fields of acoustic pressure p and horizontal velocity v
excited in a two-dimensional waveguide (x, z; x is the
horizontal Cartesian coordinate) by a linear source
O(x — L)Yo(z — z,) of frequency ® by means of local-
mode decomposition of the cross section method,

p(x’ Z) = Z(T)l(x: Z)Gl(-’x)a
: ()
v(x,2) = [iop(x )] Hi(x, Dgix),

then for mode functions G,(x), g,.(x), m =1, 2, ..., the
following matrix equations over parameter I, € (1, L)
corresponding to the position of the right section of
the waveguide demarcating the irregular and layered
areas of the medium are valid:

[Gm(x7 L)] = —G[(_Pm(L, Z0)]7
[g.(x; L)] = —8[9,(L, z)];

L

Glx; L) = G(x; ) exp{ [dntlim() - V' (n)]

X

+ LRV + V' (M)R(M) =% () 1G(n; n)]},

diLG(L; L) = i[R(L)G(L; L)+ G(L; L)R(L)]

—G(L; LYV(L)-WL)G(L; L) - E
+iG(L; D)[(R(L)V(L)

+ V' (L)x(L)-%'(L)]G(L; L), (2a, b)

G(L; D), g, = % (L)/(20).

In (1), (2), the vector of the normalized eigenfunc-
tions [@,, (x, )] with the domain of determination & €

(h, H) in each x-section satisfies a problem on eigen-
values (EV) for a medium with variable density p(x, z)
in the general case, and boundary conditions at bot-
tom # and surface H correspond to requirements on
the pressure and velocity fields.

Also, ¥ (x) = {k,(x)} is the diagonal matrix of
local EVs, k' (x) is the diagonal matrix of derivatives
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of EVs, F is a unit matrix, V = {V, ,(x)} =
(_Pm(x: Z)@(T)Z(X, Z)
p(x,z) Ox
coupling, and V7(x) is the transposed matrix V arising
in the equations because of variable density [1]. We
consider that the irregular field occupies a part of the
space (L, <x < L) outside of which the medium is lay-
ered, boundaries I, I, are matched [2], and the source
is located in a water layer in the right section x, = L.
Equation (2b) describes a backscattering matrix
RW; L) = ZiR(L)a(L; L) — E. If backscattering
can be neglected, the approximation of one-way
propagation (OWP) is valid, the solution for which
at @(x; X) = %! (x)/(2i) is given by the simplified
quadrature (2a). The adiabatic approximation is pos-
sible later, assuming matrices V(x) = {0}, V7(x) = {0}.

dz is a matrix describing mode

DISCRETE APPROXIMATION
OF THE LATERAL WAVE

Mode approach (1), (2) to the solution of 2-D
problems obviously assumes the presence of a discrete
spectrum of the wave operator. However, as was noted
above, for models of a medium with a bottom in the
form of the half-space of sediments, which is what the
Pekeris waveguide in particular is, the solution also
includes the contribution from the continuous spec-
trum of values k in the form of the integral over the
branch cut. The branch cut is conducted in a particu-
lar way from a branch point owing to the presence in
the bottom conditions of the double-valued radical

(k% —1x2)12, where k, is the wave number in liquid sed-

iments. Since we will be considering conducting the
branch cut on a complex plane of wave numbers «

according to Pekeris, such that Re(kf — %) =0,

Imk € (0, ), the sound field will be reduced to the
sum of propagating and leaky modes and the branch-
line integral. Clearly, in the conditions of an irregular
waveguide, direct allowance for the branch-line inte-
gral is inconvenient for calculations; a natural way of
including it in the above-described approach (1), (2) is
preliminary discrete approximation. For this purpose
the procedure suggested in [11, 12] for layered
waveguides has been used. According to it, the half-
space of sediments is replaced by a modeling layer of
finite thickness with a complex metric of 4 — Ay =
|h — hylexp(in/4) and an absolutely rigid lower bound-
ary of h,. Thus, the spectrum of the operator of the
problem becomes purely discrete, and the emerging
family of new modes, which for brevity we conve-
niently term cut modes, corresponds to the integral
over the branch cut. Now for a sound field, we have
representation (1) with three families of modes, the
eigenfunctions (EFs) of which are determined within
the domain (H, Ay). It has been shown [12, 13] that
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Fig. 1. Model of irregular Pekeris waveguide. Horizontal
dotted lines in the upper drawing correspond to the posi-
tions of the bottom in [1] at x < 60 m for a frequency of
32 Hz and x < 20 m for a frequency of 105 Hz. The dashed
line shows the introduction of lower boundary 4 of a layer

with a complex metric. S is the arrangement of the source.

convergence of the given approximation to the inte-
gral is uniform, and its accuracy promptly increases
~|h — hy|~3, slowing down only in the case of cutoff fre-
quencies of the waveguide of ~|h — hy|~!. As a result, it
is possible to restrict calculations to a reasonable vol-
ume for different relations of the waveguide parame-
ters and sound frequency of interest. An important cir-
cumstance for calculations is that the family of the
poles approximating the branch cut and being the EVs
of a new family of modes, appears separated in the best
way on a complex plane from the EVs of propagating
and leaky modes. On the basis of the aforesaid, we will
consider propagation of low-frequency sound to a
double-layer irregular waveguide with a liquid bottom,
explored in [1], only now we will prolong the water—
liquid sediments interface 4(x) almost to the coastline
(H — h =1 m), and we replace the half-space of sedi-
ments with a complex layer 4 — A, (Fig. 1). We take
waveguide parameters similar to [1]: velocities of
sound in water, ¢ = 1500 m/s; in bottom sediments,
¢; = 1650 m/s; the density ratio is m, = p,/p = 2;
uptake in the bottom, = 0.005. We will choose
acoustic frequencies for simulation of 10, 32, and
105 Hz.

First of all, we will examine the features of the new
family of EVs corresponding to the branch cut. As an
example, Fig. 2 shows the location on a complex plane
of EVs for all families of modes present in the problem
at a frequency of 105 Hz in the section of the
waveguide with a depth of 100 m. In this case, there are
six propagating modes and eight leaky modes with

Re K,zn >0 and cut modes.

ACOUSTICAL PHYSICS Wol. 55 No.5 2010

615

Imx
0.16 105 Hz, H—h =100 m, g
lh — ho| = 100 m Rexyy |
R
0.12F% H
19
0.08 ;
i
g
f
ooaf Y, ‘?’
%
L é
0 0.1 0.2 0.3 0.4
Rex

Fig. 2. EV x,, [m_l] for the model in Fig. 1 in the source
section, f = 105 Hz. “*” is «x,, propagating and leaky
modes, “0” is k,,, cut modes.

For demonstration, Fig. 2 shows 12 poles approxi-
mating the branch cut at |4 — hy| = 100 m lying near
line Rek;. Since the given poles k,, have an imaginary

part increasing with number «, > 0, the cut modes

corresponding to them are damped when removing
from the source, just like leaky modes transferring
energy to the bottom (only the law of falling off of a
lateral wave more slowly that for leaky modes). This
property determined the number of modes approxi-
mating the integral over the branch cut necessary dur-
ing simulation in a layered problem (at a constant
depth of the waveguide). For the irregular waveguide,
the situation is more difficult, because other factors
also play a role. Figure 3 gives a representation of the
shape of @,, (z) for the cut modes. It is seen that these

EFs are significantly less in amplitude than the EFs of
usual modes and have a maximum near the bottom
which is increasingly expressed with an increase in
number. As a result, the lateral wave approximated by
the sum of the cut modes sounds mainly the near-bot-
tom area, although with decreasing frequency and
reduction in the depth of the waveguide, a large part of
the water is highlighted (lower inset to Fig. 3). The
thicker the modeling layer |4 — hy|, the more fre-
quently the poles of the branch cut will be situated on
the curve in Fig. 2, which combines them with each
other for visual convenience; however, at the same
time, the corresponding EFs ¢, (z) in Fig. 3 will have
a smaller amplitude. Note that in [11—13], generally
speaking, there are no restrictions from below on
quantity |4 — h,| of the model layer in comparison with
the parameters in the problem, except for those that
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Fig. 3. Dependence on depth of EFs y,,,(z) = (H — h)l/2 ¢, (z) in the water layer of the model in Fig. I in the source section. f=

105 Hz, |h — hg| = 100 m. Ic...5c, first five cut EFs. In the upper inset, for comparison, the EFs of the first propagating modes Ip
and Zp are shown. In the lower inset, the cut EFs at a depth of 10 m.

concern the accuracy in approximating the branch cut
given above.

Calculations show, however, that the given param-
eters should optimally be |4 — h| ~ 6—7 wavelengths of
sound A. In this case, a compromise is reached
between the number of necessary cut modes, which
should be as small as possible, and the accuracy of the
approximations. The main conclusions regarding the
contribution of a lateral wave, which can be made with
reference to a layered waveguide in accordance with
[13] and on the basis of Figs. 2 and 3, are as follows.

In the situation when there are several propagat-
ing modes, their field dominates at medial and long-
range distances, and near the source, the contribu-
tion of leaky modes is also important. The presence
of cut modes approximating a continuous spectrum
thus does not change the wave pattern and can be
disregarded (for example, in the waveguide in Fig. 1
at f~ 100 Hz). Even the presence of only the first
propagating mode considerably masks the contribu-
tion of the lateral wave; however, in such a situation, it
is already noticeable in the transition region from the
nearest field to the farthest, and for its correct descrip-
tion, only the first several least attenuating cut modes
are necessary.

Finally, the branch cut contribution cannot be
neglected in the case when propagating modes are not
excited in a waveguide, since only leaky modes do not
correctly describe the wave field (for example, Fig. 1
for f< 10—20 Hz). As well, there is an increase in the
number of cut modes necessary for a correct represen-
tation of the contribution from the continuous spec-
trum; however, in most cases, this number does not
exceed 10—15, which is at least ten times less than
required for false-bottom models. We will further rely
on these conclusions when analyzing sound propaga-
tion in an irregular waveguide.

RESULTS OF CALCULATIONS
FOR AN IRREGULAR WAVEGUIDE

As follows from quadrature represention (2a),
except for the imaginary part «,,(x), the exponent of
the exponential curve of the solution will be also
described by matrices of mode coupling V(x), V7 (x).
For the considered waveguide with constant sound
velocity in layers (Fig. 1), in Egs. (2), it is possible to
express the matrix coefficients in an analytical form
through a derivative of depth H(x) = H — h(x), the EFs
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Fig. 4. Dynamics of the real part K,,(x) [m’l] for the model in Fig. 1, f=10 Hz, |A — hy| = 1000 m. Ic...9c, nine cut EVs. Ipis the
EV of the propagating mode, and //k...3lk are the EVs of three leaky modes. The dashed line corresponds to Rek;.

at the bottom ©®,,(x, #) and difference in EVs, so

V0)} ~ H' ), (h(0) B, (h(x))/ (] — 1) [1].
Thus it is clear that the smallness of quantities in
numerator at certain x can be compensated by the
small difference in the EV of the denominator, which
can lead to weakening in the signal attenuation factor
with distance for modes in the waveguide, as well as for
the first numbers of cut modes. From the physical
point of view, this means the possibility of effective
redistribution of sound energy between modes of dif-
ferent families. Figures 4 and 5 show the behavior of
some EV families of modes in the waveguide in Fig. 1
for a low frequency 10 Hz, well illustrating the
expected features of generation of the field. The bold
curve of eigenvalue Ip shows how a propagating mode
generated by a source in section x = 680 m passing
through the critical section at x * 600 m transforms
with a sharp reduction in amplitude (like the example
in Fig. 3) to a cut mode (EV Ic). In the interval of
430 m < x < 600 m, the sound field in a water layer is
generated by the cut modes and, to a lesser extent,
leaky modes 21k, 31k.... At a distance of x ~ 430 m,
conditions appear for emergence of a leaky mode, and
one of the cut modes with substantial growth in ampli-
tude will be transformed to the first leaky mode
(EV lIlk, bold curve). Thus, in the adiabatic consider-
ACOUSTICAL PHYSICS Vol. 55

No.5 2010

ation by means of cut modes, the continuous transfor-
mation of the first (fundamental) mode propagating in
the waveguide into a leaky mode beyond the critical
section is described, as well as gradual transition of
sound energy from the water layer into bottom sedi-
ments and its concentration near to interface 4(x). The
mode transformation process occurs at an interval of
Ax = 170 m. Numbers of the cut EVs related to those
corresponding for modes Ip, Ilk are thus fairly con-
ventional enough, since they are determined by the
chosen value |4 — hy| of a modeling layer. From the
viewpoint of a more exact theory considering mode
coupling in an irregular waveguide, area Ax is also
remarkable in its convergence of different EV families,
which leads to intensification of intermode interaction
and, as a consequence, redistribution of mode energy.
So, mode Ip during transformation to cut mode ¢ will
be effective for interacting with cut modes 2c and 4c,
and leaky mode //k in its appearance is strongly related
to profile modes 4c and 6c. The result of the given
qualitative analysis is supported below by the calcula-
tions of Egs. (1), (2). Figure 6 shows the curves of relative
intensity / of the sound field in decibels as functions of
distance x for three observation horizons, and Fig. 7

shows the relative amplitudes p,, = |®,, (x, 2)G,,(X)/py|
for a series of modes determining the field in a
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10 Hz, Pekeris waveguide
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Fig. 5. The same as Fig. 4, the dynamics of the imaginary part «,,(x) [m’l].

waveguide. It is well seen that in comparison to the
adiabatic approach when modes do not couple, the
propagating mode during departure from a source
starts to give up sound energy to cut modes and leaky
modes 271k and 31k, which intensify and exchange
energy with the leaky mode arising at x~ 430 m,
which also considerably intensifies. The given mode
actually determined the field in a waveguide at x <430 m.
Owing to the power exchange between modes, curves
of losses for the approximation of one-way propaga-
tion (OWP) lie 8—12 dB above the “adiabatic” ones.
The OWP theory (thin curves) well describes the
fields of modes of pressure and transmission loss
(good for intensity!) in a waveguide except for dis-
tances x < 130 m. Here, the backscattered field
reaches 3—4 dB, and the difference in OWP from the
exact solution becomes appreciable. To the right of the
source, the difference is less than 1 dB. Thus, in the
irregular area of a waveguide, the given variation is
determined mainly by backscattering of the first leaky
modes, and to the right of a source, a single propagat-
ing mode. Certainly, the cut modes contribute to back-
scattering, however, to a very small degree, since the
derivative corresponding to EVs «, (x) (as well as for a
propagating mode [10]) is small; in addition, in full
field, this is imperceptible because of the relative
smallness in amplitudes of the given modes. For this
reason, in [1], in studying backscattering in a two-
dimensional Pekeris waveguide, only propagating and
leaky modes were considered.

These laws are observed for even an higher fre-
quency of 32 Hz. In this case, it is seen from Fig. 8 that
the interval Ax of essential transformation of modes
and the intermode power exchange is shifted to the
coastline. The cutoff section of the first mode is
located now at x % 57 m, and the leaky mode arises at
x ~ 47 m, that is, Ax ~ 10 m, having decreased almost
20 times in comparison to /= 10 Hz. These features
are observed in the illustration of intensity losses in
Fig. 9 in the form of sharp, to 30 dB (the left insert to
Fig. 9), drops in the curves of the adiabatic theory
compared with other dependences. On even larger
parts of the irregular waveguide, exact and approxi-
mate dependences are in quite good agreement, which
was established and discussed in [1]. The right inset to
Fig. 9 presents the dashed curve from this work for a
depth of 10 m, constructed by summation of propagat-
ing and leaky modes for the hydrology in Fig. 1 with
the bottom shown by the dotted line at x < 60 m.
Apparently, the presence of cut modes is observed not
only in the area of substantial redistribution of mode
energy, but also in those areas of a waveguide where
interference minimums of intensity form, which
within several decibels can be both smoothed by pres-
ence of a lateral wave (for example, in the areas of x =
285, 370, 490 m) and to be accentuated (x = 445).

With further increase in frequency the new effects
are not observed. So, for 105 Hz, the first propagating
mode transforms to a leaky by means of cut modes at
x~ 17.5 m at an interval Ax 3 m. Only in this area of
the waveguide near the coastline x < 18 m presence of
a lateral wave will be appreciable. Note that in an
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Fig. 6. Curves of transmission losses for the model in Fig. 1. f= 10 Hz. Level of curves is referenced to the value of pressure field

Py in the free medium at a distance of 1 m from the linear source (py = i Hf)l) (k)/4). Observation horizons are designated in the

figure. A source at a depth of 50 m in section x; = 680 m. Bold curves, exact solution (1), (2); thin solid curves, OWP; dashed

curves, adiabatic theory. |7 — Ag| = 1000 m.

irregular waveguide, transition of second and higher
numbers of propagating modes into corresponding
leaky (the opposite is also valid) occurs continuously
within the limits of calculation accuracy, “media-
tion” of cut modes is not required for this. In such
sections, there is only convergence of EVs of differ-
ent families, leading to more intensive intermode
power exchange.

Here it is pertinent to briefly compare the sounded
results to those of the aforementioned studies [8, 9], in
which within the limits of the adiabatic approach and
asymptotic analysis, the transition process of a propa-
gating mode through the critical section of a
waveguide is described. In the given studies, the con-
cept of leaky modes and (integral) cut modes is not
involved, and by means of Airy functions and their
derivatives, continuation of a field of a propagating
mode for the area of the critical section is carried out.
On this basis, a qualitative deduction is made about
strong coupling of this mode with continuous spec-
trum waves (in [9], it is actually only a question of the
contribution of a branching point) in the neighbor-
hood of the critical section and the departure of its
energy into the bottom (see also [4, 5]). The above
illustrations of calculations testify to the fact that at
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low frequencies (10 Hz, Figs. 6, 7) from the quantita-
tive point of view taking into account the leaky
modes and cut modes, even the adiabatic depen-
dences do not drop off rapidly beyond the area of the
critical section, and transition of sound energy into
bottom sediments is characterized by sufficient grad-
uality. Even more significantly, this process is slowed
down within the limits of the more exact theory con-
sidering mode coupling. In the latter case, rapid fall-
ing off of curves it is not observed even for higher fre-
quencies (32 Hz, Fig. 9).

In summary, we point out that to obtain the depen-
dences presented in Figs. 6, 7, 9, Egs. (2) for 10—15
cut modes and 4—5 propagating and leaky modes
depending on frequency were numerically solved. In
addition, in obtaining field (1), we took into account
35 highest leaky modes in the adiabatic approximation
for the description of intensity in the immediate
neighborhood of the source.

CONCLUSIONS AND DISCUSSION

In the present study, we suggest the results of calcu-
lations on propagation of low-frequency sound in an
irregular double-layer waveguide with homogeneous
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Fig. 7. Dependences on distance in decibels for absolute values of individual modes, normalized to quantity py =i Hgl) (k)/4 for

horizon H — z=10 m. f= 10 Hz. Bold curves, the exact solution (1), (2); thin solid curves, OWP approximation; dashed curves,
adiabatic theory. Upper inset, cut modes 3¢, 6¢, 7c. Lower inset, leaky modes 2lk, 3/k compared with the mode Ip transforming

to the cut mode Ip. |h — hy| = 1000 m.

water and a liquid bottom taking into account the con-
tribution of the Perekis branch-line integral, which
corresponds to a continuous spectrum of the wave
operator, which is involved in the problem. The given
integral has been approximated by a discrete family of
modes according to the procedure suggested by
V. Zavadskii and V. Krupin in the case of a layered
medium, after which simulation is conducted on the
basis of solving the earlier evolutionary matrix equa-
tions for the modes. These equations are equivalent to
a boundary-value problem in the horizontal direction,
posed within the limits of the cross section method. It
is shown that when, in an irregular waveguide, there is
a cutoff of the first propagating (fundamental) mode,
its energy does not “disappear,” but passes to cut
modes approximating the contribution of a continu-
ous spectrum. These modes describe a lateral wave
that propagates primarily in the near-bottom area, re-
emitting part of the sound energy into bottom sedi-
ments via a leaky mode arising in some section. For all
intents and purposes, the sound field in the range of
distances D between the critical section of the funda-
mental mode and the coastline is generated by the
given leaky mode and the first slowly attenuating cut

modes. Owing to the strong mode coupling in the
neighborhood of the critical section, this field is not
small or rapidly falling, as the adiabatic theory supple-
mented by asymptotics predicts [8, 9]. In actuality,
sufficiently slow de-excitation of sound energy occurs
from the waveguide into bottom sediments. Although
in the coastal zone of a sea shelf, for any frequency,
there is a critical section cutting the fundamental
mode, the given effect of redistribution of sound
energy between modes of different families is the most
substantial in a frequency range lower than 10—20 Hz.
In this case, the mentioned interval of distances D
reaches hundreds of meters. At frequencies of 100 Hz
and above, area D narrows to tens of meters, hugging
the coastline. In this case, the presence of a continu-
ous spectrum in the problem manifests itself only in a
narrow range of distances, smaller than several metres.
Thus, the conclusion is confirmed about the possibil-
ity of neglecting the contribution of the integral over
the Perekis branch cut in a water layer at frequencies of
f= 100 Hz [13] if the small part of the waveguide near
the coastline (beyond the critical section) is of no
interest. Note that from the viewpoint of allowance for
backscattering, the law is the opposite. So in [1] it is

ACOUSTICAL PHYSICS Vol. 56

No. 5 2010



THE CONTRIBUTION OF A LATERAL WAVE 621

32 Hz, |h — ho| = 300 m

0.123
\7c/ 6c
Sc
0.122 4
""""" Rek,
¥
]
=4
/ 7 /)
0.121 +
2lk
3lk
200 400 600
1lk—3c
0120 1 1 1 1 1 1 1 1 J
10 20 30 40 50 60 70 80 90 100

X, m

Fig. 8. Dynamics of EVs k,,,(x) [m’l] for the model in Fig. 1, f= 32 Hz, |h — hy| = 300 m. Ic...7c, the first seven cut EVs. Ip is the
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shown that the contribution of a backscattered field
increases with increasing frequency to 100 Hz,
whereas for 10 Hz it does not exceed 3—4 dB (in pres-
sure intensity) and for the waveguide in Fig. 1, the
contribution is localized in the area with a steeper bot-
tom incline.

It is noteworthy that in the literature, one more
method of approximating the Perekis branch-line
integral is known. It is suggested in [14] for describing
broadband signals in a layered waveguide, and it
assumes the introduction of a linear refraction index
with a complex gradient in the half-space of liquid
sediments. As well, instead of a branch cut, there arises
a certain discrete family of EVs. The given method in
solving the matrix equations suggests dealing with
multiple calculation in the coefficients of combina-
tions of Airy functions and their derivatives. In the
procedure [11—13], which is used in our study, only
elementary functions figure in the coefficients, but
in addition, sufficiently fast convergence of similar
discretization to the contribution from the branch-
line integral is proved. The comparative simplicity of
this procedure in respect to the half-space approxi-
mation makes it possible to use it for studying irreg-
ular waveguides with more complicated bottom
models taking into account the stratification of
parameters and elastic properties in the upper sedi-
ment layers.
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