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Abstract— Results of an experimental study of nonlinear attenuation and carrier frequency phase delay of
weak ultrasonic pulses under the effect of an intense low-frequency wave in a bar resonator made from Kare-
lian granite are presented. The effects observed in the experiment are analytically described in terms of the
phenomenological equation of state containing hysteretic and dissipative nonlinearities. A frequency depen-
dence of nonlinearity is revealed, and the effective values of nonlinear parameters of granite are estimated for

the frequency range from 150 kHz to 1 MHz.
DOI: 10.1134/81063771010040081

The topical problems of modern nonlinear acous-
tics [1—3] include studies of mechanisms responsible
for the anomalously high nonlinearity of the so-called
microinhomogeneous [4, 5] (or mesoscopic [6])
media, the determination of the laws governing the
nonlinear wave processes in them, and the derivation
of nonlinear equations of state for these media. The
topicality of the aforementioned problems is the result
of the fact that the “classical” five-constant (or nine-
constant) elasticity theory intended for describing
weakly nonlinear homogeneous solids [7—9] fails to
explain the nonlinear wave processes observed in
experiments with microinhomogeneous media. On
the other hand, no “universal” theory adequately
describing nonlinear wave processes in such media has
ever been developed. Solving these problems is related
to the search for materials with a strong acoustic non-
linearity and to experimental investigation of the
amplitude—frequency dependences characterizing
nonlinear wave processes in them. Experiments show
that the acoustic nonlinearity of microinhomoge-
neous media is frequency-dependent and that the
nonlinearity of such media usually exhibits different
behavior in the low-frequency and high-frequency
ranges: it is hysteretic in the first case and dissipative in
the second case.

In this paper, which continues our previous work
[10], we present the results of experimental and theo-
retical studies of the nonlinear acoustic effects mani-
festing themselves in the propagation of weak high-
frequency pulses in the field of an intense low-fre-
quency pumping standing wave in a bar resonator
made from Pitkyarant Karelian granite. We analyti-
cally describe the amplitude—frequency dependences
observed for the attenuation and the carrier frequency
phase delay of these pulses under the effect of the low-

frequency wave in terms of the equation of state con-
taining a hysteretic nonlinearity and a dissipative one.

The experiments were carried out using the same
bar resonator (with a hard boundary and a soft bound-
ary) as that used in [10]. The resonator was made from
Karelian granite; its length was L = 35 c¢cm, and its
cross-section had the form of a square with a side of
1.6 cm. The measurements were performed at room
temperature using the setup described in [11, 13]. For
the first three longitudinal modes of the resonator, at a
small excitation amplitude at which nonlinear low-
frequency effects were not observed, the resonance
frequencies F, (p = 1, 2, 3) were as follows: F; = 3820,
F,=10220, and F5 = 17200 Hz. The errors in measur-
ing the frequencies and the amplitudes of the low-fre-
quency acoustic wave and the high-frequency pulses
were +5 x 1071 Hz, £5 x 102 dB, and £1.6 x 10~! dB,
respectively; the error in measuring the phase delay of
a pulse was £5 ns.

In the experiments, in addition to the resonant
low-frequency pumping wave, relatively weak ultra-
sonic pulses were excited in the bar (on the side of its
soft boundary). For the pulses transmitted through the
bar, we observed and studied the nonlinear attenuation
and the carrier phase delay as functions of the strain
amplitude g,, of the intense low-frequency wave. The
duration of the pulses was about © = 60 ps, their carrier
frequency f was within the range from 150 kHz to
1 MHz, and the pulse repetition frequency was 26 Hz.
After transmission through the bar, the high-fre-
quency pulses were received by an accelerometer
placed at the hard boundary of the bar; then, they were
supplied to a digital spectrum-analyzing oscilloscope,
where their amplitude U(g,,) and carrier phase delay
At(g,,) were measured. The propagation velocity C
of high-frequency pulses in the bar, which was
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Fig. 1. Dependence of (/) the nonlinear attenuation coef-
ficient and (2) the carrier frequency phase delay of pulses
with the frequencies f = (a) 277 and (b) 490 kHz on the
strain amplitude g, of the low-frequency wave (at reso-
nance) in the case of the resonator excitation at the first
three modes. The straight lines correspond to the depen-
dences y(g,,) ~ &, and At(g,,) ~ g,,.

determined from the delay (at g,, = 0), was about 5 x
10° cm/s, so that the pulse length / = Ct = 30 cm was
smaller than the length L of the bar and the pulses
propagated in the bar in the same way as in free space.
As the strain amplitude g, of the low-frequency
pumping wave increased (in the range €,, > 107% > g%,
i.e., in the second range considered in [10]), the
amplitude of the received high-frequency pulses U(g,,)
noticeably decreased, while their phase delay At(g,,)
increased. Figure 1 shows the dependences of the non-
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linear attenuation coefficient y(g,) = In[U,/U(g,,)]
(where U, is the pulse amplitude in the absence of
pumping) and the phase delay At(g,,) for pulses of fre-
quencies f= 277 and 490 kHz on the strain amplitude
g,, of the low-frequency wave (at resonance) in the
case of resonator excitation at its first three modes.
From Fig. 1, one can see that, for the first three modes
of the resonator, the coefficient y(g,) and the delay
At(g,,) are proportional to the strain amplitude g,, of
the low-frequency pumping wave and do not depend
on its frequency F,; i.e., x(g,) ~ &, and At(g,) ~ &,.
Figure 2 shows the dependences of the coefficient y =
%(g,,) and the delay At(g,,) on the pulse frequency fin
the case of the resonator excitation at the second mode
(p =2) atg,,= 107>, Despite a certain scatter of exper-
imental points irrespective of the measurement error,
one can see that an increase in the pulse frequency f'is
accompanied by an increase in the coefficient y =
%(€n), x(€,) ~ f, while the delay At(g,,) first (between
150 and 300 kHz) noticeably decreases as At(g,,) ~ /"
and then (from 300 kHz to 1 MHz) remains approxi-
mately constant: At(g,,) = const. Such dependences of
x(g,,) and At(g,,) on the pulse frequency f'testify to a
dispersion of the nonlinear acoustic properties of
granite, which is due to manifestation of nonlinearity
relaxation [11—13].

We note that changes in the amplitude and phase of
a weak high-frequency pulse in the field of an intense
low-frequency wave are possible in a resonator with a
hysteretic nonlinearity alone (as a consequence of the
variation of the mean propagation velocity of a high-
frequency pulse in the field of an intense low-fre-
quency standing wave) [14]. Calculations show that,
for a resonator with superposition of an elastic qua-
dratic hysteresis and an inelastic quadratic hysteresis
(see Egs. (2) and (10) in [10]), the nonlinear attenua-
tion coefficient y,(g,) and the nonlinear phase delay
At (g,,) linearly depend on g,, and are determined by
the expressions

nvo+(1—n)ﬂB/28

g,) = R 1
Xh( m) 271: m ( )
Ath(sm) — nyo+(1_n)ﬂ:ﬁ/2%’ (2)
o’ C
Ty + 7, + 75+
Here,yvo=vi— 72+ 713 — Vs + (ntvatysty.) > Y1-4

4

and [ are the nonlinear parameters of the elastic and
inelastic hystereses, respectively; and n and 1 — n are
the concentrations of the defects responsible for the
manifestations of the elastic and inelastic hystereses,
where n = 0.38.

However, it should be taken into account that the
nonlinearity of microinhomogeneous media (includ-
ing rocks) is characterized by a dispersion, i.e., is fre-
quency-dependent, and, as the frequency Q of an
acoustic wave increases (under the condition that Q >
Qg Where Q¢ is the defect relaxation frequency),
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their hysteretic nonlinearity decreases [11—13]. The
results of our previous experiments [10] showed that,
in the low-frequency range (at least, up to 17 kHz), the
hysteretic nonlinearity of the given granite specimen is
frequency-independent; hence, 2, < Qg(, where p =
1, 2, 3. However, in the case under study, the frequen-
cies ® = 2mf of ultrasonic pulses could exceed €., SO
that, in the high-frequency range (o > Q,), the hys-
teretic nonlinearity of granite could be (and, most
likely, was) frequency-dependent. The effective values
of its parameters in the high-frequency range should
be smaller than the corresponding low-frequency
parameters determined in [10]. Still, we will estimate
the possible values of y,(g,,) and At,(¢,,) related to the
hysteretic nonlinearity of granite [10] under the
assumption that this nonlinearity is frequency-inde-
pendent, i.e., inertialess. Substituting the values of the
parameters y, +7v; = 8.9 x 103, 7, + v, = 3.3 x 103, and
B =4.2 x 10°, which were determined from the results
of the first series of low-frequency experiments, in
Egs. (1) and (2), we obtain y, = 15.2 x 10° and ny, +
(1 —mnP/2 = 10* For g, = 1073, we have y,(g,,) =
1.6 x 1072, which is almost 14 times smaller than the
experimental value y (g,,) = 2.2 x 10~! measured for f=
150 kHz (Fig. 2a). At the same time, the value of the
phase delay proves to be Art,(g,) = 350 ns, which
roughly agrees with the experimental value At(g,,) =
500 ns obtained for the same amplitude g,, = 107> and
frequency f= 150 kHz (Fig. 2b). From the experimen-
tal dependence y = y(g,,) (Fig. 1a), it follows that the
granite specimen under study possesses dissipative
nonlinearity [14]. From the experimental dependence
At, = At (g,,) (Fig. 1b), it follows that the nonlinear
phase delay observed for the carrier of a high-fre-
quency pulse is related to the manifestation of the
relaxing hysteretic nonlinearity (or the reactive non-
linearity of the form y|e|e, which makes no fundamen-
tal difference for the phase delay) [14]. An exact ana-
Iytic description of the effects under consideration
with allowance for the relaxation of all the types of
nonlinearity observed in the material (the hysteretic,
reactive, and dissipative nonlinearities) presents a
complicated problem. Therefore, to simplify our cal-
culations, we perform a qualitative analysis in terms of
the phenomenological equation of state that contains
the hysteretic [10] and dissipative inertialess nonlin-
earities [14]:

(e, &) = E[e—f(g,&)]+ap[l+35|¢]e. (3)

Here, ¢ and ¢ are the longitudinal stress and the longi-
tudinal strain, f(g, €) is the hysteretic function of both
strain and strain rate €, o is the linear viscosity coeffi-
cient, p is the density, d is the dimensionless dissipative
nonlinearity parameter, |f(e, €)| < [¢], dlg| < 1,
adlé| /C?* < 1, and C? = E/p. Since, in the high-fre-
quency range, granite exhibits nonlinear relaxation,
the parameters o, 0, Y,_4, and 3 of the hysteretic func-
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Fig. 2. Dependence of (a) the nonlinear attenuation coef-
ficient and (b) the carrier phase delay on the pulse fre-
quency fin the case of the resonator excitation at the sec-
ond mode (p = 2) at g, = 10~>. The straight lines corre-
spond to the dependences yx(g,,) ~ f, At(g,,) ~f1, and
Ag(g,,) = const.

tion f(g, ¢) depend on the frequency w of the acoustic
pulse . In this case, the nonlinear attenuation coeffi-
cient y(g,,) of the pulse due to the dissipative nonlin-

earity apd|e|¢ is determined by the expression [14]

2a88m0)2L

o @)

X(Em) =

and the phase delay Az, (¢,,) is determined by Eq. (2).



456

From the comparison of dependences (1)—(4) with
the experimental results, we obtain the values of the
effective parameters of dissipative and hysteretic non-
linearities of granite for the frequency f, = 150 kHz

(0o L/2C3=1): 62 6.2x 10*and ny, + (1 — n)np/2 =
1.4 x 10*. The value of the second parameter is close to
the corresponding parameter determined above from
the results reported in [10]. From Fig. 2, one can see
that, as the frequency fgrows (from 150 kHz to 1 MHz),
the coefficient y(g,) ~ a(f)8(f)f? increases on the
average as f/f;, i.e., o(f)8(f) ~f1; the hysteretic non-
linearity parameter [ny,(f) + (1 — n)nP(f)/2] first
(from 150 to 400 kHz) decreases as f,/fand then (from
400 kHz to 1 MHz) levels off: ny, + (1 — n)nP/2 =
8 x 10°.

Thus, our experimental studies of nonlinear effects
arising in the propagation of weak high-frequency
pulses in an intense low-frequency pumping wave field
in a Karelian granite bar resonator showed that, in the
frequency range between 150 kHz and 1 MHz, the
acoustic nonlinearity of granite is anomalously high
and frequency-dependent. The nonlinearity contains
the dissipative and hysteretic components. As the fre-
quency grows, the dissipative nonlinearity, which is
responsible for the attenuation of sound by sound,
mainly increases, while the hysteretic nonlinearity,
which is responsible for the carrier phase delay of
high-frequency pulses, decreases.
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