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Abstract—An exact solution is obtained to the problem of axisymmetric normal modes and natural frequen-
cies characterizing surface perturbations of a drop that sits with an arbitrary wetting angle on a substrate and
experiences only gravity and surface tension. The resulting mode solutions are used to calculate and analyze
different shapes of the perturbed surface for the same drop placed on a vibrating base. The distinctive feature
of the present study is the explicit representation of the results in the form of calculated shapes of the surface
of a vibrating drop, comparison of the parameters of actual drops with resonance frequencies, and compari-

son with experimental data.
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Such simple (and even ordinary) objects as a drop
of a liquid and its antipode, i.e., a gas bubble (a gas-
filled cavity) in a liquid, had been studied for years,
and they still attract the attention of researchers work-
ing in different fields of modern science and technol-
ogy. Moreover, recently, it was found that these simple
objects can be used as microreactors for conducting
important physical technological operations (see
below). These findings, in their turn, stimulated fur-
ther research into the nature of drops and bubbles.

The theory of the dynamic behavior of bubbles and
drops that describes their shape variations due to nat-
ural oscillations appeared at the boundary of the 19th
and 20th centuries. The development of the theory
began with the first publications [1—3], which now
have become classical. Later, the initial models were
improved, primarily, by taking into account explicit
physical effects, such as viscosity, compressibility of a
fluid medium, thermal and diffusion processes, etc.
The basic stages and results of these studies can be
found in [4—6] and in references therein.

Apart from detailed investigations of natural sur-
face oscillations in bubbles and drops, considerable
interest has been attracted to the behavior of these
objects under the action of external driving forces. In
the studies of the latter effects, external actions were
primarily represented by acoustic waves. The models
and results concerned with acoustic actions on gas-
vapor cavities in a liquid have formed a special area of
research: acoustic cavitation [7, 8]. It is important to
note that, approximately 20 years ago, the fully devel-
oped theory of acoustic cavitation laid the foundation
for another new area of research: studies of the inter-
action of acoustic waves with bubbles enclosed in arti-

ficial shells; these studies are important for the devel-
opment of modern technologies in medical acoustics
(see, e.g., [9]).

Unlike acoustic cavitation, the effect of acoustic
waves on drops has been rather poorly investigated.
Scarce papers devoted to this subject [10—13] were
mainly related to the development of principles of
acoustic levitation and its use for remote manipula-
tions with liquid drops and for their diagnostics.

An important step forward in the theoretical and
experimental investigations of the dynamic behavior
of bubbles and drops was related to finding the possi-
bilities for practical application of the dynamically
varying inner volumes of these objects, in which,
owing to the unusual conditions and regimes, some
specific physicochemical effects and reactions can be
run. Acoustic actions can effectively control the
dynamics and, primarily, the volume variations of the
aforementioned micro-objects and, hence, their
internal processes. Consequently, microbubbles and
microdrops can operate as microreactors that perform
the necessary physicochemical processes under an
acoustic control. For microbubbles, the development
of the microreactor concept began with the internal
luminescence effect, which was first described in [14];
the modern interpretation can be found in [15]. The
latest idea concerned with this phenomenon is the
“acoustic fusion (sonofusion) effect” inside a collaps-
ing bubble [16].

Implementation of the microreactor concept fora
drop requires considering the system formed by a drop
on a solid substrate, which makes it necessary to take
into account the wetting effect [17]. The “technologi-
cal process” of such a microreactor consists in that, in
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@ (b)

FI?. 1 Adrop on a substrate: (a) the wetting anigrle notice-
ably exceeds 90° (weak wetting, a lyophobic surface ofthe
substrate with respect to the drop liquid); (b) the wetting
angle is notlceablx smaller than 90° (strong wetting, a lyo-
philic surface ofthe substrate).

the course of evaporation (drying) ofa drop, which is
a disperse system with a filler in the form ofsome kind
of micro- or nanoparticles, the latter undergo self-
organization (self-assembly). As a result, a certain
micro- or nanostructure is formed on the substrate,
such a structure being suitable for various applications
[18—21]. The aforementioned process depends on
natural factors: the size and composition of the drop,
the relative properties determining the wetting of the
substrate material with the drop liquid, etc. However,
it can also be actively controlled by acoustic methods.
In particular, in [23], a microdrop on a substrate and
the processes in it were studied under the action ofa
surface acoustic wave (SAW) propagating in the sub-
strate. It is also possible to consider a vibrational
action on the processes in a microdrop: the mecha-
nism of this action should be basically different from
the effect of SAW because of the much lower fre-
quency range (from tens of hertz to one or two kilo-
hertz). Indeed, by acting on the entire drop through
the temporal variation ofthe “effective gravity force”
in combination with the surface tension, vibration
excites certain modes of spatial oscillations of the
drop as a whole. This manifests itself in a specific
shape of the perturbed surface of the drop (see
below).

In the present paper, we calculate the perturbed
shape ofa drop ofan ideal incompressible liquid on a
vertically vibrating substrate, which determines the
vibration effect on the self-assembly of micro- and
nanostructures in the disperse system represented by
the drop on the substrate. A necessary step in solving
this problem is the initial calculation of the eigen-
modes and natural frequencies ofa drop on an immo-
bile substrate with allowance for holonomic con-
straints at the boundary between the liquid drop and
the solid surface. The fundamental distinctive feature
ofthe problem solved in this paper is the arbitrary wet-
ting angle (see Fig. 1) corresponding to different lig-
uids and solutions placed on the substrate. In the few
publications concerned with the theoretical analysis of
such systems [23, 24], calculations were performed for
hemispherical drops on the substrate, i.e., for awetting
angle of 90°. In this particular case, calculation and
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Fig. 2. Geometry ofthe problem.

analysis of modes are considerably simplified, some of
the modes being degenerate. However, the results of
such calculations give no idea of the behavior of a
vibrating drop in the cases of strong and weak wetting
(Fig. 1). In our paper, we also demonstrate possible
deformations of the surface of a vibrating drop on a
substrate (such data are absent in the cited publica-
tions).

The geometry of the problem is shown in Fig. 2.
The drop in the form ofa sphere segment with a char-
acteristic opening angle (wetting angle) 00and an ini-
tial sphere radius R sits on a horizontal substrate so
that the circular contour of its contact with the sub-
strate remains invariable in the course of vibrations.
Taking into account the surface tension a at the gas—
liquid interface and the gravity force, we consider per-
turbations of the drop surface in the spherical coordi-
nate system, these perturbations being axially sym-
metric about the vertical axis (i.e., in the azimuth
angle y). First, we determine the normal modes of
natural oscillations ofthe drop in the form ofa sphere
segment attached to the substrate. Then, on the basis
of the calculated normal mode system, we analyze
the vibration-caused forced variations of the drop
surface. At each of these two steps, the boundary
conditions in the region of contact between the drop
and the substrate are considered as imposed holo-
nomic constraints (boundary conditions) and, with
the use of the D ’Alembert—Lagrange principle, the
generalized constraint forces are eliminated. After
this, a change to normal generalized coordinates is
performed. In addition, the following effective
approach to the problem is applied: we consider
oscillations of the whole spherical drop with holo-
nomic constraints in the chosen cut plane, which
represents the actual substrate. As a result, we simul-
taneously obtain the solution for two cases (two parts
of the drop), one ofwhich is for the sphere segment
with an angle 00and the other is for the sphere seg-
ment with the angle n —0Q

We assume that the motion of the liquid drop that
affects the shape of its surface is potential, which
allows us to use the velocity potential ¢ in our subse-
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quent equations. The varying surface of the spherical
(in the absence of perturbations) drop is described as

16,1 = R+E(0,1),

where £(0, 7) is a small deviation of the drop surface
from the initial spherical surface.

Since the drop is incompressible, the potential sat-
isfies the two-dimensional Laplace equation, whose
solution is determined by the series of nth-order Leg-
endre functions P, multiplied by the desired amplitude
functions and integral positive powers of the radius,
which excludes singularity at the center of the drop:

N
0(r,0,1) = 3 4,(1)" P,(cos0). (1)

n=2

It should be noted that summation in Eq. (1) begins
from the third term, since the zero-order partial mode
corresponds to isotropic extension (compression) of
the drop and is not allowed because of incompressibil-
ity. The first partial mode corresponds to translational
displacement of the drop and is not considered in our
problem. The boundary condition at the drop surface
normalized by the unperturbed spherical surface and
corresponding to the pressure jump due to surface ten-
sion and gravity is determined by equation [25]

2

o9 o oQ o0Q _
Ce_S2+A,)Le @cosd =0, (2
pf@tz RZ( +Ag) or + Pfgar cos 2)

where A = L o (sin 0 Q) is the angular part of the
sin6 00 00
Laplace operator in the spherical coordinate system

with allowance for symmetry in the axial angle .

On a solid substrate at z= 0, the no-leakage condi-
tion should be satisfied:

val,_, = 0, 3)

where n is the normal unit’s vector to the substrate and
directed toward the upper half-plane; the substrate
plane is determined in spherical coordinates by the
equation rcos® = Rcos0,. For calculation, the no-
leakage conditions are assigned on the discrete circles
M, (see Fig. 2). Now, it is necessary to specify the con-
dition at the contact circumference, which should be
immobile. This condition has the form

:‘%fad(P|r=R,e=e0 = 0. @)

In the above expressions, it is convenient to change
to the dimensionless variables

v =T, T,=Rpjo, X=r/R
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and to the dimensionless physical parameters

N
d(X,0,7) = zgcp(r, 0,1 = ZAn(r)X"Pn(cose),
R

n=2
A = - ;HAm =1/ Ty),
0
EX.0.1) _ — . "
B = éfn(r)X" P,(cos0),
df,
d_’C - nAn(T)7

where A4,(t) and f,(t) are the desired dimensionless
functions of time.

Substituting Eq. (5) into boundary condition (2),
we arrive at a system of dimensionless equations
describing the amplitudes of the partial mode of a free
spherical drop in the constant gravity field:

+I’l(l’l——1)An71:| = 0,
2n—1

(n+1)

ziin+oon2An+K[
2n+3

n+1

2_

o, =nan+2)(n-1), n=23..,N.

Substitution of Eq. (5) into boundary condition (3)
leads to a system of dimensionless equations describ-
ing the holonomic constraints at the liquid—solid
boundary inside the circle whose perimeter coincides
with the contact line:

N
fi= D A0OBx =0, k=12..,P-1,

T 8 k:(coseo)”*1 (6)

cos0y

x [ncos8, P, (cosO,) + sinekPi(cosek)].

For the contact line, using Eq. (4), we obtain
N-1

ZA,,(I) [nPJIV(coseo)Pn(coseo)
n=2 (7

- NPN(coseo)Pi(coseo)] = 0.

Combining boundary conditions (6) and (7), we arrive
at a single system of equations for the imposed con-
straints:

N
o= Y AMB =0, k=1,2..,P,
n=2

cosO,\" !
Bnk: ( 0)

cosBy

x [ncos@,P,(cosO,) + sinekPi(cosek)],
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k=12,...,.P-1, n=2,3..N,
. (8)
B,x = nPy(cos0y)P,(cosby)
—NPN(COSQO)Pi(COSQO),
k=P, n=23..,N-1,

Br=90, k=P, n=N.

We note that, in Egs. (6)—(8) and in the subsequent
calculations, the upper infinite limit of summation is
replaced by a finite value while continuous boundary
condition (3) imposed on the entire contact area is
represented in the discrete form. This is necessary for

subsequent numerical calculations.

We represent the solution ®(X, 6, t) describing
arbitrary oscillations (including the forced ones) of the
drop on the substrate as a superposition of normal
modes ®"(X, 0, 1):

®(X,0,7) = 3 O"(X,0,7),

; ©
®"(X,0,1) = ZA;”(I)X”P”(COSG).
n=2
If we represent A, (t) in the form
ANy =ale ", (10)

the dimensionless constants @, and W,, involved in

Eq. (10) will describe the relative amplitude of the nth
partial mode included in the mth normal mode and
the mth natural frequency, respectively.

To obtain a system of differential equations
describing the desired functions A,’,n (1) appearing in
Eq. (9), we apply the D’Alembert—Lagrange principle
and eliminate the substrate’s reaction forces with the
help of constraint equations (8):

- 2
A+ 0,4,

(n+ 1) n(n—1)., }
ek S -8,04,, 4 M= -5,04,
P
= Zuanka
k=1

ZAn(T)Bnk = O:

n=2

where 1, (kK =1, 2, ..., P) form the set of the desired
independent Lagrange factors. After elimination of
ACOUSTICAL PHYSICS Vol. 55
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Natural frequencies for two complementary drops of water
on a solid substrate with opening angles 6, = 60° and 120°
and with three characteristic radii

Number | R=1mm | R=5mm | R=10 mm | Dimension-
of normal less natural
mode Natural frequencies, Hz frequencies

3 260 23 8 6.0954

4 413 37 13 9.6621

5 476 43 15 11.1511

6 571 51 18 13.3598

7 719 64 23 16.8276

8 950 85 30 22.2372

9 1008 90 32 23.6130

10 1290 115 41 30.1978

these factors, the system of equations can be repre-
sented in matrix form:

X" = cx". (11)

Here, X = [a;" ; a;" 3 eed a]";] is the column vector of
the unknown amplitudes of partial harmonics for the
mth normal mode and Cis the known constant matrix.
The homogeneous system of equations (11) will be
solved when, for the matrix C, we determine the eigen-

. m m
values A, A, ..., Ay_ and the eigenvectors [a, ; a3 ;...;

ay | for each of the A,,. The eigenvalues are found from

the characteristic equation det(C — AF) = 0, where F
isa (N — 1) x (N — 1) unit matrix. The set of the eigen-
vectors X of matrix C satisfies the equation CX" =
A, X" The eigenvalues are related to the natural fre-

quency by the formula W,, = /-, .

Figure 3 shows the calculated shapes of normal
modes and the corresponding natural frequencies
(table) for two drops with different wetting angles: 6, =
60° and 0, = 120°. The normal modes are numbered
according to the same principle as that used in [26]:
the number m of the normal mode is identical to the
number of nodes within half of the deformed drop’s
profile. It should be noted that, in the case of drop
oscillations at a resonance frequency, the shape of the
drop’s surface gradually acquires the shape of the cor-
responding normal mode irrespective of the initial
conditions.

Now, we proceed to considering the dynamics of a
drop on a substrate performing harmonic oscillations.
Let the following law govern the dimensionless dis-
placement of the substrate:

Co —itWe+n/2)
T) = Ze ,
() =
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(a) (b)

() (d)

Fig. 3. Shapes of normal modes for a water drop with a radius of 1 mm on a substrate (the upper row refers to a drop with an open-
ing angle of 60°, and the lower row to a drop with an opening angle of 120°). The solid and dotted lines show antiphased oscilla-
tions for the (a) 3rd, (b) 4th, (c) 5th, and (d) 6th modes. The natural frequencies are given in the table.

where Wis the dimensionless cyclic frequency of sub-
strate oscillations. To describe the deformation of the
drop surface, we change to the noninertial frame of
reference rigidly connected with the substrate. In this
case, the external force density field involved in the
equation of motion of the liquid in the drop can be
represented as f = g — a, where g is the free fall’s accel-
eration vector and a is the substrate’s acceleration vec-
tor varying with time. Thus, the change to the nonin-
ertial frame of reference is equivalent to the introduc-
tion of a time-dependent gravitational field, whose
acceleration is directed along the OZ axis (see Fig. 2),
in the equation of motion:

2
%V+(VV)V = —V—p+g—ez% (12)

0 Pr or

where e, is the unit vector along the OZ axis.

The inclusion of the variable gravitational field
leads to modification of boundary condition (2),
which, in terms of the dimensionless variables, takes
the form

o’D oD . dat oD

= —Ka—a(cose —cos0,)
ot

3

X=1

where a is the substrate’s acceleration normalized by g.
Note that, in the general case, boundary condition (13)
on the free drop’s surface is of the integro-differential
type because the liquid particle’s displacements and
the velocity potential are related by an integral depen-
dence. In the particular case of harmonic variation of
these quantities with time, the aforementioned depen-
dence degenerates into an algebraic one. Substitution
of series (5) in boundary condition (13) according to
the scheme described above leads to a system of

dimensionless equations describing the partial mode’s
amplitudes of a free spherical drop in a variable gravi-
tational field:

2
(n+1) A,
2n+3

Ant ol A, + K(1 + a)[

+K6_a[n+1

otl2n +

+n(n— I)An_l}
2n—1

n
+ L =0,
n+l 2n_1/;1—1j|

o, =nn+2)(n-1), n=273,..N.

Applying the D’Alembert—Lagrange principle to
the coupled system in a variable gravitational field, we
obtain:

At oA, +K(1+a)
2
UL (-5, 0, + =D (1-5,04, |

2n+3 2n-1

n+1

(1 =8,y + 52 (1= 8,00, |
P
= Z”kﬁnk: (14)
k=
n=23..,N,

N
> Budi(t) = 0, k= 1,2,..,P,
n=2

df,
dt

To solve system (14), we applied the Runge—Kutta
method accurate to fourth-order terms with the use of
the following initial conditions: at zero time 7 = 0, the
zth velocity component of liquid particles at the sub-
strate surface coincides with the substrate velocity

= nd,(7).

ACOUSTICAL PHYSICS Vol. 55 No. 6 2009
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Fig. 4. Shapes of drops (the parameters are identical to those in Fig. 3) on a substrate vibrating with a frequency of 1900 Hz and
a displacement amplitude of 10 um for different instants of time: 7 = (a, a") 0.0149, (b, b") 0.0168, (c, ¢') 0.0302, and (d, d') 0.0343 s.

The period of the vibrating substrate is 0.526 ms.

while the liquid particles outside this thin layer are
assumed to be immobile. The law governing the
motion of the substrate is chosen so that, at r = 0, its
displacements and, hence, the displacements of the
liquid particles are zero. Figure 4 shows the profiles
of the deformed drop’s surface for different instants
of time.

From the results of numerical simulation, it follows
that deformation of the drop surface may be consider-
able. Presumably, this is related to the potential flows
arising inside the drop under the effect of the external
force’s acceleration f = g — a. One can expect that
their evolution is determined by not only the magni-
tude of the external force F,,, = mf (m is the mass of the
drop), but also the inertia of the liquid layers. The lat-
ter property can be characterized by the time A¢, that is
required for a liquid volume’s element to “respond” to
a variation in the velocity v, of the moving substrate.
Since F,,, acts in the vertical direction, we condition-
ally divide the drop into layers in the direction of the
0Z axis, i.e., according to their distance from the sup-
porting plane (see Fig. 2). In view of condition (3), the
layer adjacent to the solid—liquid interface does not
move along the OZ axis with respect to the substrate;
therefore, the characteristic time At, for this layer is
much smaller than that for the layers separated from
the substrate by certain distances. If the characteristic
time 1/F of the variation of the external force is com-
parable with Az, and, at the same time, a reaches con-
siderable values (according to the results of numerical
simulation, considerable values of a are those greater
than 10), it is possible to initiate a regime with a con-
siderable deformation of the drop surface and an
effective excitation of low-order modes. At such
parameters of external action, for drops with an angu-
lar size 6, < /2, the system may pass to a nonlinear
regime accompanied by the detachment of micro-
drops from the surface [26]. Based on the results of
No. 6
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numerical simulation, we assume that the drop’s
atomization regime can be initiated if the frequency of
substrate oscillations is sufficiently low, so that the
drops have enough time to “respond” to changes in
the substrate velocity. On the other hand, the fre-
quency should be sufficiently high for the plane to
reach sufficiently high acceleration a in the course of
its motion. It is important to note that, in the case of
choosing the optimal frequency, the deformation of
the drop’s surface considerably depends on the sub-
strate’s displacement amplitude &,.

At high frequencies of substrate oscillations, when
1/F < At; (according to numerical simulation, for a
system with the chosen parameters, this condition is
satisfied by frequencies of several kilohertz and
higher), one should presumably expect a softer
regime, at which the perturbation is localized near the
drop surface. Possibly, persistence of such a regime will
favor an increase in the rate of drop evaporation with-
out spraying (atomization). Indeed, it is under these
conditions that the energy of substrate motion can
theoretically be localized in the kinetic energy of the
motion of a liquid particle in a thin layer of the drop,
which should facilitate separation of molecules from
the liquid surface. Generation of such a regime may be
useful for practical implementation of technological
processes that require fast evaporation of drops from a
solid surface in the absence of a pronounced convec-
tion of the liquid inside the drops.

Returning to the idea of controlling the self-assem-
bly and self-organization of nanostructures in micro-
drops by vibration action, we note that such an action
on the nanostructure’s self-organization process is of a
multifactor character. First, vibration directly affects
the dynamics of nanoparticles in the drop. Second, it
affects (controls) the microdrop’s evaporation pro-
cess. Third, the perturbed structure of the drops sur-
face will “manifest” itself in the pattern that remains
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on the substrate after evaporation. All of these factors

are
the

initially determined by the spatial modes excited in
drop by vibration, i.e., by the modes studied in the

present paper.
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